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Overview

Automated MRI Brain Tissue segmentation:
— Motivation

MRI tissue segmentation algorithms:

— Gaussian Mixture models for MRI tissues

— EM Based Tissue labeling

— Spatial Priors

Subject Specific Priors

— Parameterization of Anatomical Priors

— Modeling of probabilities

— Example in Brain development
Applications of Automated Segmentation:

Human Fetal Brain Morphometry



Motivation

* Brain MRI scans reveal basic tissue structures:
— Grey Matter, White Matter, CSF

* Need to extract tissues to quantify brain anatomy:

— Total, Regional and Local Volume
— Surface Curvature
— Cortical thickness

e Detect brain tissue changes:

— atrophy, tissue loss

* (eg provide biomarkers for drug treatments of Alzheimer’s
disease)

— Growth and abnormal development



Brain tissues and MRI intensities

T1W MRI scan (coronal slice) Gray Matter

Whi

MRI intensity



Tissue Classification

Key assumption:
Tissue classes appear as piece wise uniform regions of intensity

cerebro spinal
grey matter fluid white matter




The Image Intensity:
Observed data (voxel values)

Observed Tissue Intensity in the given MRI

e e e e ey The set of voxel values together:
Y ={y,,....Y, }

is a realization of an n dimensional
Random Variable

Y=(,..,Y)

... voxel

j=n Each individual voxel intensity y,

can be treated as a realization
of a random variable Y; where y; is from
the set of tissue intensities appearing
in the image
(eg 0-255 or 0-65535)
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The Tissue Labels:
‘Hidden’ data

Tissue Types in the Underlying Anatomy

The set of voxel labels together:
L={l,..1}

is a realization of an n dimensional
Random Variable

L=(L,..L)

... voxel
J=n

DL . M

Each individual voxel label /,
can be treated as a realization
of a random variable Lj where ZJ is from

Q
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(Here two tissue classes:
red and black)

the set of tissue classes appearing
in the image
(e.g. grey matter, white matter etc)



For a Voxel: The conditional probability density of
intensity y, occurring, given tissue label is &

For most classes it is reasonable to assume a Gaussian/Normal distribution:

Intensity

T
p(Y; =y|L, =k, ®) = G(y,14,,0,) = e ™

2O,
Parameters determining the distribution: in general we don’t
P = {tuk , O'k} know these: MRI scans do not provide calibrated intensities

(unlike CT)




The Probability density of random variable Y,

Given by the sum of probabilities of each tissue class
(a Gaussian Mixture Model)

p(Y,|®)= Y p(Y,|L; =k, ®)p(L, = k|®)

overall
proportion of
image having a
given tissue class




Probability density of random variable Y,

Assuming that the prior probability of voxel at j belonging
to tissue class k is spatially constant:

p(L; =k|P)=c,

This acts as a ‘Mixture Weight’ for each class k in the Gaussian Mixture Model:

p(Y)|®)= Y p¥|L, =k ®)e,

Vk=1..K

Together with the tissue Labels for the voxels:

L={l,..,0}

->How to find values for these?



Probability of observing a whole MR
image given underlying tissue labels

Assume that the intensity of a voxel given its tissue label, is
conditionally independent from the intensity of other voxels
(i.e. the random variables Y, Y, ... Y are independent)

%hen:
The probability of observing an image Y given a set of labels is the product of
observing each of the voxel intensities separately:

PY|L,® )= p(y, |l . @)* p(y, |l ,@)..* p(yy [l . P)




What are the best parameter values?

On plausible definition: look for the parameter values © that
maximize the likelihood of the observed image

A

P  drgmax

()

Or preferably the log likelihood:
argmax

O

p(Y |L, D)

A

P =

L, ®)

log, p(Y

A

of the whole image: (I) — argmaX loge Hp(yj
Vj

- [, ®)

_ argmax Eloge p(yj
o <

/. ®)



Maximizing Likelihood

A\

P  Argmax

O

* Need to find:
 The tissue label map L
* The set of intensity model parameters @ for each tissue class.

Ylog, p(y; |1, @)
Vj

* No closed form solution available.

e BUT: Iterative EXPECTATION MAXIMIZATION (EM) algorithm
is well suited for the case of a Gaussian Mixture Model.

[Dempster et al., 1977]

->Labels are the ‘missing data’ to be estimated
MRI intensities are the observed data.



Expectation Maximization

" argmax
= =50 Slog, p(y 1, @)

Vj

Expectation Evaluation Step Maximization Step

M Given current expectation of tissue

Given current intensity parameters:

labels at each voxel j
Find most likely values for intensity model

parameters (m+1)
E yjpjk

(m+1) Vj

U

D ={U,,0,,C.ccc.lss O, Cr }

Evaluate the expectation of label &
at each voxel j

(m) (m) (m)
(m+l) Gy, 0, " )c,

E(yj m+1)) p(m+1)

- .M- -
S
=3
-

i \ (m+1)
—

(m+1)
Epjk
Vj




T1W MRI Brain Tissue Labeling

Simultaneous
classification and
parameter estimation

Likelihood is
guaranteed to
increase at each

P
SR
———" AP N

uptlm_t-e—;-n—i;l ure model Iteration



The need for Prior Information

* The EM algorithm provides only a LOCAL
optimum

— It is highly dependent on starting estimate

* Tissue type is not completely explained by
Image intensity

— need spatial context.

— How to initialize algorithm with intensity
parameters or labels?



Atlas Based Priors:
A spatial model of brain tissues

* Constructed by taking many example segmented brains:

mapped to a reference anatomy using non-rigid registration
. Example Segmented Individual brains

Common Anatomy

* Form an AVERAGE to capture the expected location
of major tissue types in the population used.

P(Grey Matter)  p(white Matter P!CSF!

 Example: Montreal Neurological Institute (MNI) atlases




Automated Segmentation of New subject MRI:
Mapping Atlas Priors to Subject Anatomy

Average MRI of Atlas Data
Average MRI of Atlas Data in Subject Space

MRI of new Subject

White Matter Grey Matter
Probability Probability

Cerebrospinal fluid
probability



Using Spatial Priors in EM labeling

A
aremax
o =2

P J
E Expectation Evaluation Step

Expectation of label k at each voxel j

given current estimate

for intensity model parameters

Moderated by Spatially Varying Atlas Priors

[Ashburner and Friston, 1997]

(m) (m) (m) (m)
(m+1) _ G(y] U )C Ty

(m) (m)N (m) __(m)
EG(yJ9 r )Cr JTJr

M

2 log. Py, ;@)

Maximization Step

Most likely values for intensity model
parameters, given labels

Sopi

(m+1) Vj
U
(m+1)
.75
Vj

E ()’j m+1)) p(m+1)

Ep(mﬂ)




Further Development of Brain Tissue
Segmentation Methods

* Bias Field Estimation:
— Tissue signal is spatially varying
(like an illumination model for MRI).
* Fit a smoothly varying multiplicative field to each class.

— [eg: Wells et al, TMI 1996; Guillemaud and Brady TMI 1997]

e Partial volume effect:
— voxels at boundaries contain contributions for different tissue classes
— Need to Model compartmental contributions to voxel intensity
* [eg: Shattuck et al, Neuroimage 2000; Ballester 2002;
Choi, H. S., Haynor, D. R., and Kim, Y. TMI 1991.]
 Smoothness priors to remove single voxel errors:

— Give neighbors an influence on each other
* Markov Random Field



Developments of EM segmentations:
Limitations of Priors

e Variations in anatomy that cannot be directly parameterized:
— Brain tumor (space occupying)
— Brain injury (eg blood clot)
— Surgical resection/implants

[Van Leemput et al., TMI 2001, Zijdenbos TMI 1994]
WM Lesion

e Variations that can be parameterized:
— Age: in the study of the growing brain
[Habas et al Neuroimage 2010]
* Alternative Geometries for Tissue Statistics:

— Layers in the fetal brain
— [Habas et al Proc. SPIE Medical Imaging, 2009]



A motivation for new work:
Fetal Brain MR imaging

Clinical evaluation
of pregnancy

Early identification
of brain abnormalities

Detects tissue boundaries
invisible on ultrasound

Essential for the study of
normal and abnormal
brain development

In utero




Example Clinical Images
 T2W Multi Slice

Single shot fast spin echo (SSFSE; 2D)

T2 weighted
TR =4500 ms, TE =90 ms
Approximately 1x1x3 mm? voxel dimension

15~30 slices in each stack

* Anisotropic resolution with thick slices

e Often Acquired using Real Time Planning tools
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Movie: From Daniela Prayers grc
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Rousseau et al, Academic Radiology 2006.

Kim et al., “Intersection-based motion correction of multi-slice MRI for 3D in utero fetal brain image
formation,” IEEE Transactions on Medical Imaging, TMI 2010

Biomedical Image Computing Group







Challenges in fetal brain MRI Analysis

e adult brain analysis methods cannot be directly
applied
— different geometry
— different tissue morphology

e Rapid changes occurring over very short time:
— shape/size changes
— intensity/contrast changes

— appearance and disappearance of transient tissue
types from different brain regions

= Underlying anatomy must be interpreted in
relation to its developmental stage



T1W Adult

T2W Fetus
Approx 22W GA

T2W Adult




Fetal Brain Tissue Zones

Cortical Plate (CP)
Subplate (SP)
Intermediate Zone (IZ)
Germinal Matrix (GMAT)

-> Peri Ventricluar Zone
+Sub Ventricular Zone

Ventricular CSF (VENT)

S

11111111111




Laminar organization of the fetal brain

T1W MRI (Pathology)

1 = Ventricular zone (germinal matrix)

2 = Periventricular fibre rich zone

3 = Subventricular cellular zone

4 = Intermediate zone (fetal "white" matter)
5 = Subplate zone

6 = Cortical plate

7 = Marginal zone

[Kostovic et al, Cerebral Cortex, 2002, 536-544]



Adult Brain tissue segmentation:
Gaussian Mixture Model of Tissues

Gray Matter




Challenges in fetal brain segmentation

= Adult brain analysis methods cannot be directly
applied
— different geometry

— different tissue morholo

JWM

GM{

LGMAT

JCSF

Habas et al., “Atlas-based segmentation of the germinal matrix from in utero clinical MRI of the fetal brain”,
Medical Image Computing and Computer Assisted Intervention, LNCS, vol. 5241, pp. 351-358, September 2008.



Fetal Atlas-based EM segmentation

original image corrected image prob. atlas segmentation

bias correction

Mk, Ok
y p(y|k) P(k|x) c(x)

" E-step

AA

M-step

p(kly)

Need to make priors match subject anatomy in
terms of gestational age (Weeks)

Habas et al.,Human Brain Mapping 2010.



Building a Spatiotemporal atlas of
the fetal brain

Use of age-specific atlases can improve results of
automated brain image analysis

BUT: Separate atlases needed for different weeks
of fetal brain development
BETTER approach: a 4D or parameterized atlas of

tissue distribution:

* temporally parameterized tissue probabilities for
each voxel

Multiple timepoint imaging of same fetus not
feasible



Statistical Model of Developing
Tissue Distribution

Probability of Tissue Class

(

Manual Segmentations
‘ ™~

K) Grey Matter

Subject 1 ji ¢
1y )

Reference
Anatomy

Subject 2 {i ¢ C 3 Germinal Matrix

B acr® |
o 3

-~ - »

- »
- - ¥

Subject N |+

White Matter

Count # of Voxels
With Each Label

Ventricular CSF
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Voxelwise modeling from registered maps

Given eample tissue segmentations from different ages placed into common anatomical space
Assume: each vo(xelfir)\ common anatomy has tissue probability which varies with time
pP\X, 1y (

p(._X! f.l)

- >‘<_k-
= o.s | Fitted Model of Probabilities over time T~ |

seeestoaticcoxry=al =asge=_



Temporal modeling of tissue probabilities

Could use a simple polynomial model of probability change with time
So that probability of a tissue class k at voxel j, for a given time ¢ is:

pjk(t) = E ajkdtd

d=0..D

where a;, are a set of coefficients fitted to the data points at voxel &

eg a quadratic model (D=2) to capture a peak of tissue probability in time:

s P2 (X f)

- 0.0

not a probability!

gestational age,t

Problem:

Model not constrained within
the space of probabilities
(0..1)



Solution: LogOdds Temporal modeling of tissue probabilities

LogOdds transform maps between [0..1] <-> scalars Fit model in LogOdds space
" Pr(X,t _ d
L(pr(x,t)) = log ( “',( 1) ) =l (x, 1) L (1) = E A gl
= (D
probability space LogOdds space
1.0/0—0—0—0—0-00-00-00-00 00— 1.0j0—0—0—0—
0! : ~0.5¢

O.OIQ—.— —0—0—000 000 +.—.| 0.0

gestational age,t gestational age,t

1
> 1k (x,1)) =
L7 (1)) 1+ exp(—1(x,t

) = pr(x,1)

Pohl et al., “Logarithm odds maps for shape representation”, Medical Image Computing and Computer
Assisted Intervention, LNCS, vol. 4191, 2006.



* Equivalent to conventional averaging of spatially
normalized tissue label maps

* Affected by age distribution within subject group

CP WM GMAT VENT

\‘l

-

S W

Tissue probability maps generated in average space

Biomedical Image Computing Group




21 weeks 22 weeks 23 weeks 24 weeks

RedwloXw,

Age-specific tissue probability maps generated in average space

Biomedical Image Computing Group




Automated Fetal Tissue Segmentation

Shape model of tissue Contrast model of MR Compostion model of tissue
displacements with age intensity with age probability with age
U(x,) I(x,) Lep(X))  Lapaiz(Xy) Loyar(X,) seeeees Lypir(X,)
) (f)
Model @ Group |,
as(t) Average Age
and Shape
az(t)
New Subject Synthesize for Subject Age
Map to Age Specific Shape

Nan rigid
registration
of synthetic

MRI &

subject
MRI

Model @ Subject
Specific Age
and Shape

Shape
Analysis

v




Resolving temporal correspondence

" Challenge:

— we need to define consistent mapping between
subject anatomies with different ages

— inconsistent structural features over time,
e.g., appearance and disappearance of GMAT

— can induce artefactually large deformations in
non-rigid registration
= Approach:
— exclude temporally inconsistent tissue boundaries

— use only GM, WM+GMAT, and others (CSF, non-
brain)



Fetal MR T2w imaging data

= 1.5T scanner, TR =4000-8000 ms, TE =91 ms,
0.5 mm x 0.5 mm in plane, 3 mm slice thickness

= Reconstructed into 3D volumes using SIMC
20.57 weeks 21.‘8‘weeks 21.57 weeks 21.86 weeks 22.43 weeks




Results: Validation of atlas-based segmentation

= Single probabilistic atlas with D = 0 (constant avg)

= Age-specific probabilistic atlases generated for

each subject withD=1and D=2

= Atlas-based EM segmentations in subject space

Tissue or D=0 D=1 D=2
structure | Average DSC | Average DSC| p |AverageDSC| p
VENT 0.857+0.040 | 0.862+0.029 | 0.411 | 0.867+0.029 | 0.099
CP 0.834+0.014 | 0.835+0.013 [ 0.168 | 0.836%+0.013 | 0.180
WM 0.905+0.012
GMAT | 0.642+0.131




GMAT

Habas et al., “Atlas-based segmentation of the germinal matrix from in utero clinical MRI of the fetal
brain”, Medical Image Computing and Computer Assisted Intervention, LNCS, vol. 5241, 2008.

Biomedical Image Computing Group




Laminar structure of the fetal brain

frontal lobe parietal lobe occipital lobe




Our previous work on segmentation

* Atlas-based segmentation of the germinal
GV WM GMAT VENT

Habas et al., “Atlas-based segmentation of the germinal matrix from in utero clinical MRI of the fetal brain”,
Medical Image Computing and Computer Assisted Intervention, LNCS, vol. 5241, pp. 351-358, September 2008.



Depth-encoded tissue occurrence

e CSF-tissue boundaries easy to find
e Tissue-tissue boundaries more fuzzy

* Different tissues occur at different
depths from outer brain surface

GM voxels

depth
GMAT voxels

depth

P. A. Habas, K. Kim, D. Chandramohan, F. Rousseau, O. A. Glenn, and C. Studholme, "Statistical model of
laminar structure for atlas-based segmentation of the fetal brain from in-utero MR images," in Medical
Imaging 2009: Image Processing, Proc. SPIE, vol. 7259, 725917, February 2009.



Laminar depth model

* Motivated by underlying process of brain growth
* Brain modeled as volume between boundary surfaces

* Laminar structures can be deformed between boundaries
* Brain geometry encoded in terms of “laminar depth” from S, ; towards S,

* Laminar tissue layers = nested non-intersecting layers
* (Can be deformed between boundary surfaces

P. A. Habas, K. Kim, D. Chandramohan, F. Rousseau, O. A. Glenn, and C. Studholme, "Statistical model of
laminar structure for atlas-based segmentation of the fetal brain from in-utero MR images," in Medical
Imaging 2009: Image Processing, Proc. SPIE, vol. 7259, 725917, February 2009.



Laminar depth calculation

* Electrostatic potential distribution model
* Applied for cortical thickness mapping (Jones, 2000)
* Entire brain volume treated as potential field W(x)
* Boundary conditions: W(S, ;) = 0and W(S,,) = 1
* Potential distribution described by Laplace’s equation
U2y 0* U = 0> { 0> _0
ox?  Oy?  0z2
e Potential value W(x) [0,1] used as laminar depth of x
* |so-potential surfaces (0 <1, < 1) divide brain volume

into desired nested sublayers

P. A. Habas, K. Kim, D. Chandramohan, F. Rousseau, O. A. Glenn, and C. Studholme, "Statistical model of
laminar structure for atlas-based segmentation of the fetal brain from in-utero MR images," in Medical
Imaging 2009: Image Processing, Proc. SPIE, vol. 7259, 725917, February 2009.



Examples of potential distribution

Sourt

boundary
surfaces

potential
distribution

P. A. Habas, K. Kim, D. Chandramohan, F. Rousseau, O. A. Glenn, and C. Studholme, "Statistical model of
laminar structure for atlas-based segmentation of the fetal brain from in-utero MR images," in Medical
Imaging 2009: Image Processing, Proc. SPIE, vol. 7259, 725917, February 2009.



Laminar priors from manual

segmentations

* For each level of laminar depth 1. and each tissue class k

N(¥(x) = b, e(x) = k) _ _

N(\IJ(X) _ wz) — PL(k|\IJ(X) — %)
N ~Fob]

\ \

. / -
0.0 ]

0.0 1.0
)

* To create complete statistical atlas of laminar structure:

— repeat for all laminar depth levels and all tissue types

— average over multiple subjects

P. A. Habas, K. Kim, D. Chandramohan, F. Rousseau, O. A. Glenn, and C. Studholme, "Statistical model of
laminar structure for atlas-based segmentation of the fetal brain from in-utero MR images," in Medical
Imaging 2009: Image Processing, Proc. SPIE, vol. 7259, 725917, February 2009.
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Laminar priors for voxel classification

* To classify voxel x from a new subject:
— use intermediate segmentation to find boundary surfaces

— calculate W(x) and read priors P (k| W(x)) from laminar atlas

Pr(1|x)

Pr(k|x)

Pp(K|x)

_ py)|k)PL (k)
> p(y(R) Py (k)

p(k[x)

. osterior probabilities
new subject P P



Laminar atlas-based EM segmentation

* Conventional statistical prior, P,(k]|x)
— derived from anatomical 3D atlas
— spatially-varying () J
— spatial constraints for segmentation

* Laminar prior, P (k|W(x)) = P (k]|x)
— derived from laminar 1D atlas
— depth-varying
— additional constraints on tissue labels

* Combined prior for laminar atlas-based EM
segmentation

N

50

~ Py(k|x)Pr(k|x)
P(k|x) = S Pa(k|x)Pr(k|x)




Segmentation

Images manually segmented into GM, GMAT, WM, VENT
Registered to common reference space (linear + elastic)

Conventional atlas-based EM segmentation, EM(P,)

— K =6 (GM, GMAT, WM, VENT, 2 x non-brain)

— Gaussian intensity distributions, ©, = {u,,0,}

— Initial values of w, and o, calculated using probabilistic atlas
— Prior probabilities from anatomical 3D atlas, P(k|x) = P,(k]|x)
— Convergence after 20-30 iterations

Laminar atlas-based EM segmentation, EM(P,+P)
— Laminar depth recalculated from in each iteration
— Combined priors used for class probability estimation



Segmentation results

 Whole brain, sagittal view

reconstructed EM segmentation after refinement
motion-corrected MRI with prob. atlas ~ with laminar priors

normal brain
development, 22 wks

P. A. Habas, K. Kim, D. Chandramohan, F. Rousseau, O. A. Glenn, and C. Studholme, "Statistical model of
laminar structure for atlas-based segmentation of the fetal brain from in-utero MR images," in Medical
Imaging 2009: Image Processing, Proc. SPIE, vol. 7259, 725917, February 2009.



Segmentation results

* Occipital lobe, coronal view

reconstructed EM segmentation after refinement
motion-corrected MRI with prob. atlas with laminar priors

normal brain
development, 22 wks

A\ /@)

P. A. Habas, K. Kim, D. Chandramohan, F. Rousseau, O A. Glenn, and C. Studholme, "Statistical model of
laminar structure for atlas-based segmentation of the fetal brain from in-utero MR images," in Medical
Imaging 2009: Image Processing, Proc. SPIE, vol. 7259, 725917, February 2009.



Quantitative validation

* Automatic segmentations evaluated in terms of DSC
with respect to reference manual segmentations

— manual vs. conventional atlas-based segmentation EM(P,)
— manual vs. laminar atlas-based EM segmentation EM(P,+P))

e DSC values averaged over all study subjects

. whole brain par. & occ. lobes
tissue
EM(P,) EM(P,+P,) EM(P,) EM(P,+P,)
GM 0.76 £0.03 | 0.81 £0.02

GMAT | 0.73+0.03 0.73+20.03|0.71+£0.02
WM | 0.85+0.03 0.81+0.01




Summary

* Described the basic approach to Automated Brain
Tissue labeling using in many MRI studies

 Examined two extensions to the approach that
specifically deal with challenges of the developing
brain:

— The use of Subject(Age) specific priors that can be
parameterized to better match a new subject MRI

— The use of an anatomy specific geometry in which to
define priors

P. A. Habas, K. Kim, D. Chandramohan, F. Rousseau, O. A. Glenn, and C. Studholme, "Statistical model of
laminar structure for atlas-based segmentation of the fetal brain from in-utero MR images," in Medical
Imaging 2009: Image Processing, Proc. SPIE, vol. 7259, 725917, February 2009.



Quantifying Early Human Brain
Tissue Growth:
How to build a complex brain from a
simple brain?
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Early Human Brain Growth 21-28W
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Measuring Human Fetal Brain Growth
Motivation: Study of Early Brain Growth:

Smooth Brain -> Primary sulci+gyri

Structural Complexity requires Local differential growth
patterns

->Need to add tissue at different rates at different
anatomical locations

Here we map these patterns using TBM to look at internal
growth patterns

23.43 GW T 26.86 GW




Statistical Modeling of Local Anatomical

Size Across A Population with different ages:
(Vi.Y2V3)

(XX X3)
R P
oY) 52 @

(¥ N

Subject n

Linear regression to test for voxels with significantly greater or lesser
expansion than that of the whole brain



Growth Rate Map
Weekly growth rate relative
to global rate of STV
increase

V. Rajagopalan et al, "Local tissue growth
patterns underlying normal fetal human
brain gyrification quantified in utero," J.
Neurosci., vol. 31, no. 8,

w1 Global STV growth

Volume (mL)

x1 STV
D:w 21 2 2 24 5 2% b d 28 2
Gestational Age (weeks)
y 4 y 3)
(X 1/X 2/X3)

Local growth
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V. Rajagopalan et al, "Local tissue growth patterns underlying normal fetal
human brain gyrification quantified in utero," J. Neurosci., vol. 31, no. 8,
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CP: Local Area + Thickness increases

Greater growth rate on posterior cortical surface
Central, superior temporal and circular sulci emergence

V. Rajagopalan et al, "Local tissue growth patterns underlying normal fetal
human brain gyrification quantified in utero," J. Neurosci., vol. 31, no. 8,



Mapping and Quantifying Human Fetal
Brain Folding

23.43 GW

— Mean curvature: H=(k1+k2)/2

— Gaussian curvature: K=k1*k2 s |

— Curvedness (Koenderink 1992) == =~="" K2
— Shape index (Koenderink 1992)

Maximal and minimal curvature k1, k2
[/_ B

— Bending energy (van Vliet 1993) @
|
> P

k1



Detecting Statistically Significant Changes of

Curvature
+1.0

+0.5 1

0.0

mean curvature, H

101

-1.5 : : '
20 22 24 26 28
gestational age, t (weeks)

P. A. Habas, et al, "Early folding patterns and asymmetries of the normal human
brain detected from in utero MRI," Cereb. Cortex, online, in press.



Becoming g 10
More Convex oa % o
wsl & \09@"—&@ * e

0.0

mean curvature, H

-0.5

20 22 24 26 28
gestational age, t (weeks)

T Maps of
where and when
(statistically)

[Tr{v.)l<Tr(t)

dH(v) >0
d(t)
or

dH(v) <0

d(t
(t) P. A. Habas, et a

Cereb. Cortex,

online, in press.
All maps are

thresholded at
pecoming § significance level
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The Emergence of Asymmetry in Surface Curvature

t=24 GW t=25GW t=26 GW

RM=>»> <RL
| ' Convex

On Right

|Ta(v,t)|<Ta(t)

Nkwel

Convex

Maps of the fetal brain surface where there are significant inter-hemispheric curvature asymmetries at a

given voxel
All maps are thresholded at significance level p = 0.05 (corrected).

P. A. Habas, et al Cereb. Cortex,
online, in press.



Folding delays in IMVMs

» Significant sulcation delays detected bilateraly in regions of
the parieto-occipital sulcus
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