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Problem Statement

e Learn how to segment new, unseen CT images
from a set of training CT images with ground
truth organs marked.

e Goal: Minimize the training errors while
generalizing to the new CT images



Problem Organ: The Liver




Why Difficult? (Shape Variations)
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Why Difficult? (Similar Appearances)




Why Difficult? (Appearance Changes)




Why Difficult? (Position Changes)




Active Shape Model Based Framework
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Active Shape Models: Training

e Shapes are modeled in a training phase using a
set of CT volumes whose ground truth segmentations
are given.

e There are 4 steps to the training phase.

1. Find 3D point correspondences on training meshes.
2. Learn a statistical 3D shape model of the shapes.

3. Learn a boundary intensity model for each vertex.
4. Learn an organ detector that finds bounding boxes.
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Corresponding points on head meshes plus their
numeric (spin image) signatures from the work of
Salvador Ruiz Correa.
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Intensity profiles
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* Given a bounding box and the
CT slices inside it, a classifier
learns to decide if everything
inside the box is liver or not.
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Active Shape Models: Testing

 There are 3 steps to the testing phase

1. organ detection: use the learned organ
detector to detect the organ in the testing
volume and return a bounding box

2. shape model initialization: initialize the
learned statistical model based on the
detected bounding box

3. boundary refinement: use the learned
boundary intensity model to estimate the
refinement to the model for this shape
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Methods for Point Correspondences

1. Principal Component Analysis (PCA)

PCA takes in the points of each shape in the training set.
It produces a set of basis vectors (the components).

Each shape can then be represented as a linear combination
of these components.

X=X+ % c.b, wherex is the mean shape
k=1

The optimal K projection axes b,, k = 1 to K are the
eigenvectors of the covariance matrix of the training set of
points corresponding to the K largest eigenvalues.

17



Intuitive Meaning of Principal
Components

eigenvector corresponding to highest
eigenvalue

eigenvector corresponding to second
eigenvalue
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Eigenimages for Face Recognition
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* Goal: Find 3D Point Correspondence | ™" [

e |dea: Minimize MDL-based objective function

— Evaluate the quality of the correspondence

N
F =YL with L, =

1+ log()\hf)kmt), if )-k = )\cut
k=1

Ak Acuts otherwise
* The A,s are the eigenvalues from PCA.
e How: Gradient descent

— Manipulate correspondences by parameterization and re-
parameterization.

Davies et al. [IEEE TMI'02]
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e Statistical Shape Models
— Principal Component Analysis (PCA)
— Kernel PCA

Boundary Intensity Models
[JGaussian distribution
[1AdaBoosted histogram classifiers

C1Heuristics
Cootes et al. [IEEE PAMI 01], Twining et al. [BMVC’'01]

Cootes et al. [IEEE PAMI 01], Li [ICCV’05]2Kainmuller et al. [MICCAI’'07]
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e Goal: Find the bounding box
— The parameter space is 9D.

— 3D positions, 3D scales and 3D orientations.
* |dea

— Uniform and exhaustive search is unnecessary

e How: decompose the problem into three steps

— position estimation, position-scale estimation and finally
position-scale-orientation estimation.

Zheng et al. [ICCV’07]



Two ASM-based Systems

Kainmuller et al. [MICCAI'07]

Ling et al. [CVPR’08]

Statistical Shape Models

— PCA
— 43 CT volumes

PCA, hierarchical shape pyramids
75 volumes

Boundary Intensity Model

— Heuristics

A boundary classifier

Liver Detection

— Lungs detection and DICOM info |

MSL (marginal space learning)

Performance

— Ranked first in a recent liver
segmentation competition.

— 10 testing volumes

— 1.1mm (the average symmetric
surface distance)

— 15 minutes.

5 fold cross validation

1.59 mm (the average symmetric
surface distance)

1.38 mm (the median)
12 seconds.




Experimental Setting

Datasets:

— 4 types of organs (livers, left kidneys, right kidneys,
spleens)

— 15-20 subjects
Leave-one-out cross validation
Measure the reconstruction error

Metrics: Euclidean and Hausdorff distance



MDL with 2DPCA for 3D
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* |dea: Generalize the objective function to 2DPCA
space
— Replace eigenvalues from PCA with from 2DPCA
— How: Gradient descent

e Comparisons: original MDL vs. MDL-2DPCA

* Chen and Shapiro [EMBC’09]
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Results (3D Point Correspondences)
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e |dea: Tensor-based dimension reduction
methods
— 2DPCA
— Parafac model
— Tucker decomposition

* Comparisons: PCA vs. Tensor-based dimension
reduction

* Chen and Shapiro [to appear in EMBC’09]
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Results (Statistical Shape Models)
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e |dea: Classify whether an image block contains an
organ of interest

e How:
— Partition slices into non-overlapping 32x32 blocks

— Global features: gray-tone histogram of the image slice and
its slice index

— Local features: the position of a block, the mean and
variance of its intensity values, and its intensity histogram.

— 20,000 SVM linear classifiers + Adaboosting
e Comparisons: Manual vs. Adaboosting




Results (Organ Detection)

Livers (Training)

Livers (Testing)

Positive Negative
(predicted) (predicted)
Positive 96.23% 3.77%
(actual)
Negative 4.57% 95.43%
(actual)
Positive Negative
(predicted) (predicted)
Positive 91.23% 8.77%
(actual)
Negative 6.57% 93.43%

(actual)




False Positive: Blue
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e |dea: Adding hard constraints to min s-t cuts

e Min s-t cuts with side constraints

— NP-hard in general cases

— Approximation algorithm: standard rounding
algorithm

e Comparisons: with constraints vs. without
constraints

Chen and Shapiro [ICPR’08]



Results (Boundary Refinement)
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