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Chapter 1

INTRODUCTION

1.1 Motivation

Organ segmentation in three-dimensional (3D) CT scans is the first step for any further

medical analysis such as computer-aided detection, computer-aided diagnosis, radiation

treatment, or organ shape analysis. Figure 1.1 shows a typical liver segmentation example

on seven CT slices that are uniformly sampled from top to down from a abdominal CT

volume. If the CT scan starts from the chest as the example shown in Figure 1.1., the liver

is not visible in the first slices. In addition, from Figure 1.1, it is easy to see how the size

and the shape of the liver in different slices changes dramatically.

Although manual organ segmentation can be accurate, it is very time-consuming. There-

fore, an automatic or semi-automatic organ segmentation method that is efficient and ef-

fective is highly desired. However, such a system is hard to design for the following four

reasons. First, there are many different shape variations in organs, especially in livers. For

example, Figure 1.2 shows a set of 20 livers, some of which have very different shapes.

Second, the soft tissues and the neighboring organs around an organ of interest can look

very similar to the organ itself in CT scans. Third, some disease symptoms (e.g., tumors)

or contrast materials may greatly change the appearance or visibility of an organ in CT

scans. Fourth, a patient’s posture or movement can influence the rotation and position of

the organs of interest in his CT scans.

1.2 Problem Statement

A CT slice or image is a gray tone intensity image that forms one plane of a full 3D CT

volume. A corresponding ground truth slice or image is a binary image whose pixels have

value 1 in the location where the organ of interest appears in the CT slice and 0 elsewhere.

Let I and L denote the space of all possible CT slices and the space of all possible ground
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Figure 1.1: CT scans (axial view) and liver segmentation. The first column shows the CT

scans and the second column shows the corresponding ground truth liver segmentation.
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Figure 1.2: A set of 20 3D liver shapes.

truth slices, respectively. Let Υt = {(Iti,Lti)|i = 1, . . . ,N} denote a set of training image

pairs where each Iti ∈ I is a CT slice, and Lti ∈ L is its corresponding ground truth slice.

Similarly, let Υs = {(Isi ,Lsi )|i = 1, . . . ,K} denote a set of testing image pairs in which Isi ∈ I

are CT slices from the similar positions of the body as Υt and Lsi ∈ L is the correct ground

truth for Isi . The problem of organ segmentation is to use the information in Υt to learn

how to segment CT images in Υs. More formally, given the training set Υt, construct a

classifier C : I→ L that when applied to Υs, minimizes the following error function.

K∑
i=1

E(C(Isi ),L
s
i ) (1.1)

where E(., .) denotes a dissimilarity measure that measures the differences between estimated

segmentations and ground truth segmentations. In this work, we will pose the segmentation

problem as an optimization problem that not only minimizes an error function that measures

the difference between the predicted label images and ground truth label images over the

training set, but also can generalize to unseen testing CT images. The above problem
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statement and formulation can be easily extended to deal with a training set of several full

3D CT volumes.

1.3 Paper Outline

The paper is organized as follows. We review the previous work in Chapter 2. In Chapter 3,

we present our current method and report the primitive results. The proposal is presented

in Chapter 4, and we conclude in Chapter 5.
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Chapter 2

PREVIOUS WORK

In this chapter, we review previous work. Our review focuses on the four main methods

and their applications in organ segmentations. Active shape models and active contour

and level set methods are reviewed in Section 2.1 and in Section 2.2, respectively. Graph

cuts are the focus of Section 2.3 and adaptive thresholding, morphology and pixel/voxel

classifications are reviewed in Section 2.4.

2.1 Active Shape Models

2.1.1 Framework

The framework used in this paper employs active shape models [104], which are widely used

to model shapes of organs in medical image segmentation. We use Figure 2.1 to describe

the key ideas and steps in our approach.

We assume that a shape is represented by a set of vertices in a 3D mesh consisting of

vertices and edges, and there is a set of training CT volumes whose ground truth segmen-

tations are known. Figure 2.2 shows a conceptual example of simplified elliptical training

shapes. In the training phase, the goal is to learn a statistical shape model to model a

particular organ, a boundary intensity model for each vertex point and an organ detector

to detect a particular organ. Before learning the first two models, we need to find 3D point

correspondences among a set of training shapes. Figure 2.1(a) shows the training process.

There are four main steps in the training phase: finding 3D point correspondences, learning

a statistical shape model for a particular organ, learning a boundary intensity model for

each vertex point and learning an organ detector to detect a particular organ.

• Step 1. Finding 3D point correspondences: Each point on a mesh corresponds to a

point on each of the other meshes. This step finds the correspondences for all points
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Training CT Volumes 3D point correspondence 

Learning Statistical 
Shape Models  

Learned Statistical 
Shape Model 

Learned Boundary 
Intensity Model 
 

Known point correspondences 

Learning Boundary 
Intensity Model 

Learning Organ 
Detection 

Organ Detector 

(a) Training phase.

Boundary Refinement  

Organ Detection 

Organ Detector 

Detected Bounding Box 

A Testing CT Volume 

Final Shape 

Learned Boundary 
Intensity Model 
 

Learned Statistical 
Shape Model 

Shape Model Initialization 

Initial Shape 

(b) Testing phase.

Figure 2.1: Training and testing phases for active shape models.
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P1P2

P3

Organ 1 Organ 2 Organ N

P1

P3

P2

P1

P3P2

Figure 2.2: A set of training CT volumes. The colors represent the intensity values in the

CT volumes. The shape of an organ is represented by a triangular mesh model. A triangular

mesh that contains three vertex points, P1, P2 and P3, is drawn in each organ. For each

vertex point, an arrow is drawn to represent its normal vector and a 3D box represents its

intensity profile. We use different sizes and colors to indicate the variations in sizes and

intensities of organs.

on each mesh. Figure 2.3 shows an example of finding 3D point correspondences

for simple three-point triangular meshes extracted from Figure 2.2. More detailed

explanations and reviews on this step are in Section 2.1.2.

• Step 2. Learning a statistical shape model. A statistical shape model is learned

from the training set of shapes whose 3D point correspondences are known. Figure

2.4 illustrates this concept. The learned statistical shape model will be used in the

testing phase to guide the segmentation. Different statistical models will be reviewed

in Section 2.1.3.

• Step 3. Learning a boundary intensity model for each vertex point. Figure 2.5 illus-

trates this concept. The goal is to learn a model that decides whether a pixel is on a

boundary point. The learned model will be used in the testing phase for the boundary

refinement process. Different boundary intensity models will be reviewed in Section

2.1.4.
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• Step 4. Learning an organ detector. The goal is to learn an algorithm that can find the

bounding box including the organ in 3D CT volume as closely as possible. Different

organ detection algorithms will be reviewed in Section 2.1.5.

P
1P

2

P
3

P
1

P
2 P

3

P
2

P
1

P
3

(a) Input shapes whose 3D point correspondences are unknown.
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(b) Possible 3D point correspondences.

P
1P

2

P
3

P
1

P
2 P

3

P
2

P
1

P
3

(c) Correct 3D point correspondences.

Figure 2.3: 3D point correspondence. Points in the same color indicate they are correspond-

ing points.

Given a testing CT volume (e.g., Figure 2.6(a)), we want to compute an organ segmen-

tation based on the information learned in the training phase. There are three main steps

in the testing phase, organ detection, shape model initialization and boundary refinement,

as shown in Figure 2.1(b).

• Step 1. Organ Detection and Shape Model Initialization.

– Step 1.1 Organ Detection: Use the learned organ detector to detect the organ in
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P1P2

P3

P1

P2 P3

P2

P1

P3

x

y

z

(a) The training shapes whose 3D point correspondences are known.(b) A learned statistical shape model.

Figure 2.4: Learning a statistical shape model. A triangle represents a training shape and

the mean shape of all the training shapes is drawn with a diamond shape. Here we assume

that we learn a linear model (e.g., the dotted line) to represent the training shapes.

Intensity profile

(a) A training set of inten-

sity profile for a given vertex

point.

Prob.

Intensity profile

(b) A learned boundary intensity model.

Figure 2.5: Learning a boundary intensity model. A simple histogram model indicates the

probability of a point belonging to the boundary given its intensity profile.

the testing CT volumes and return a bounding box that contains the detected

organ (see Figure 2.6 for example).

– Step 1.2. Shape Model Initialization. The learned statistical shape model is

initialized based on the detected bounding box. The detection results from Step

1 are used to project the 3D model into the 3D CT scan, resulting in an initial

boundary.
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Test Organ

(a) A testing CT volume.

Test Organ

x,y,z rx

ry
rz

sx
sy

sz

(b) A bounding box that contains the

detected organ.

Test Organ

(c) The learned statistical shape model

is initialized based on the detected

bounding box to obtain the initial

shape hypothesis.

Figure 2.6: Organ Detection and Shape Model Initialization. The bounding box that con-

tains the detected organ has 9D parameters, the position (x, y, z), the orientation, (rx, ry, rz)

and the scale (sx, sy, sy). The initialized shape model is drawn in red, while the unknown

organ model is drawn in black.

In addition to organ detection, shape model initialization will be reviewed in Section

2.1.5.

• Step 2. Boundary refinement (Figure 2.7). Typically, a two step procedure is iterated.

First, the learned boundary intensity model is used to estimate the refinement, which

involves estimating a displacement vector for each vertex point in the neighborhood

of the current vertex point (Figures 2.7(a)-2.7(b)). Second, principal component sub-

space projection is performed to find the closest approximation to the addition of

the current shape plus the current estimated displacement. (Figures 2.7(c)-2.7(d)).

Boundary refinement will be reviewed in Section 2.1.6.

Thus, there are four main subproblems in the training phase for active shape models.

First, 3D point correspondences among a set of training shapes represented by a set of

vertices are found. Second, after the correspondence problem is solved, a statistical shape
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Test Organ

(a) An initial shape.

Test Organ

(b) The updated shape results from the

addition of the displacement vector to

the initial shape.

(c) The updated shape pro-

jected in the shape space.

(d) Find the closest point on

the statistical shape model to

the updated shape.

Test Organ

(e) Place the (closest) shape model in

the CT volume.

Test Organ

(f) The initial shape is replaced with the

(closest) shape and the process (steps a-

f) is repeated.

Figure 2.7: Boundary refinement.(a) For a vertex point, we draw its normal vector as a red arrow

and the search range as a violet box. The learned boundary intensity model is used to estimate the

refinement (e.g., estimating a displacement vector for each vertex point in the search range or the

violet box of the current vertex point).(b) After the displacement for each vertex point is estimated,

we can get an updated shape. (c) The updated shape is shown in the shape space as a blue square.

(d) The closest shape to the updated shape (the blue square) on the statistical shape model (the

dotted line) is drawn as the green circle. (e) The closest shape is put in the CT volume. (f) The

initial shape is replaced with the (closest) shape and the process (steps a-f) is repeated.
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model is learned from the set of training shapes. Third, a statistical intensity model of the

boundaries is learned. Fourth, an organ detector is learned. In the testing phase, after the

organ is detected, the parameters of the learned model are initialized. Then, the boundary

of the mesh is refined until a set of convergence conditions are met. We will discuss each

subproblem in details in the following subsections.

2.1.2 3D Point Correspondence Problem

Finding point correspondence is essential for automatically building statistical shape models

[35] from a training set of 3D surfaces. Statistical shape models are widely used in model-

based image segmentation and tracking [35]. Davies et al. [34] assumed the projected

coefficients have multivariate Gaussian distributions and derived an objective function for

point correspondence problems that uses minimum description length (MDL) to balance the

training errors and generalization ability. A recent evaluation study [102] that compares

several well known 3D point correspondence methods for modeling purposes shows that the

MDL-based approach [34] is the best method.

Assume that we have a training set of N 3D shapes and each shape is represented by

M 3D landmarks points. Conventionally, we can represent each such shape by a vector x

whose dimension is 3M × 1 and let Ωt = {xi|i = 1, . . . , N} denote the training set of N 3D

shapes. Before we describe the MDL-based approach [34], we review principal component

analysis (PCA), which will be used in this approach.

2.1.2.1 Principal Component Analysis

PCA is a common approach used to model the shape variations of a given training set of

3D shapes. Given Ωt, the total scatter matrix S is defined as

S =
N∑
i=1

(xi − x̄)t(xi − x̄) (2.1)

where x̄ is the mean shape vector

x̄ =
∑N

i=1 xi
N

(2.2)
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PCA finds a projection axis b that maximizes btSb. Intuitively, the total scatter of the

projected samples is maximized after the projection of the samples onto b. The optimal K

projection axes bk, k = 1, . . . ,K that maximize the above criterion are the eigenvectors of

S corresponding to the largest K eigenvalues, {λk | k = 1, . . . ,K }. The reconstruction x̃

of shape vector x can be used to approximate it.

x̃ = x̄ +
K∑
k=1

ckbk (2.3)

where ck = (x− x̄)tbk.

2.1.2.2 Correspondence by Minimizing Description Length

Davies et al. [34] proposed a MDL-based objective function to quantize the quality of the

correspondence. In this paper, we focus on the simplified version of the MDL, proposed by

Thodberg [105] as defined below.

F =
N∑
k=1

Lk with Lk =


1 + log(λk/λcut), if λk ≥ λcut

λk/λcut, otherwise
(2.4)

If 3D point correspondences among a set of shapes are estimated, then F can be used to

quantize the quality of the correspondences. The eigenvalues, {λk|k = 1, . . . , N}, used in

calculating F are computed by performing PCA for the set of shapes with the estimated

correspondences. λcut is a parameter that represents the expected noise in the training data,

and its value is manually determined.

Given the above MDL-based objective function, an efficient method for manipulating

correspondences and an optimization algorithm that minimizes the objective function are

required in order to find optimal correspondences [35]. Typically, manipulating correspon-

dences is treated as parameterizing and then re-parameterizing the surfaces. A parameteri-

zation assigns every point on the surface of the mesh to a unique point on the unit sphere,

although parameterizations may not exist for arbitrary surfaces. In this paper, we assume

that the 3D shapes are closed two-manifolds of genus 0 (e.g., a sphere). We use a conformal

mapping as a parameterization and a reparameterization that modifies the parameterization

based on kernels with strictly local effects, as developed in [51].
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We assume that the parameterization of the i-th shape is controlled by some parameter

vector αi, for which the individual parameters are given by {αi,a|a = 1, . . . , A}. The gradient

descent approach is used to minimize F with respect to a parameter vector αi. The Jacobian

matrix for the gradient of the objective function is defined as

∂F

∂αi,a
=

N∑
k=1

∂Lk
∂λk

∂λk
∂αi,a

(2.5)

It is easy to compute ∂Lk
∂λk

and so we focus on ∂λk
∂αi,a

in the following discussions. ∂λk
∂αi,a

can be computed by using the following chain rule for derivatives.

∂λk
∂αi,a

=
∂λk
∂xi
· ∂xi
∂αi,a

(2.6)

While ∂xi
∂αi,a

is typically computed by using finite differences, the following analytic form

for ∂λk
∂xi

exists.
∂λk
∂xi

= 2ci,kbk (2.7)

where ci,k is the projection coefficient of the i-th shape vector xi onto the k-th eigenvector

bk.

Finally, after the optimization is done, the correspondences that minimizes F can be

easily extracted from the corresponding parameterizations.

2.1.3 Statistical Shape Models

After the 3D point correspondence problem has been for solved all models of a training set

for a particular organ, a statistical shape model of that organ is learned from them. How to

model shape variations plays an important role in active shape models [104] that is widely

used in model-based medical image segmentation, and PCA is a common approach for this

task. Recently, there have been many algorithms that apply kernel tricks for different linear

algorithms and result in many corresponding nonlinear algorithms. For example, kernel

principal component analysis (KPCA) [92] and kernel independent component analysis [6]

are two representative examples of applying kernel tricks to principal component analysis

and independent component analysis, respectively. The resultant nonlinear algorithms gen-

erally perform better than the original linear algorithms due to nonlinearity. For example,
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[88][108] use KPCA in active shape models to model shapes and achieve better performances

than PCA.

In contrast with using statistical shape models, Brinkley [19] uses geometric constraint

networks as a representation to model biological objects. The assumption behind this

representation is that networks of local interacting geometric constraints between structure

subparts are able to represent the shape and the variations of the biological object in

question. Specifically, in [20], Brinkely used a radial contour model that is an example of

a geometric constraint network. In the radial contour model, the contours are controlled

by the flexible lengths of radials from the centroid of the organ to uniformly-spaced points

on the contour. The ratio between the lengths of two neighboring radials is used as a

constraint for this pair. In other words, given the length of one of the neighboring radial,

this ratio constraint constrains the length of the other radial. The ratios are estimated from

training examples. The end points of the radials are computed by a relaxation algorithm.

The algorithm uses prior knowledge about shapes of the organ in the form of the ratio

constraints and edge information in the images to select the end points for each radial. After

the end points are computed, the final contour is formed by connecting each end point. A

2D semi-automatic organ segmentation and matching system is implemented based on this

approach [20].

2.1.4 Boundary Intensity Models

In addition to statistical shape models, a boundary intensity model for each landmark point

is learned and is used for boundary refinement that will be explained in Section 2.1.5.

Typically, the intensity profile along the normal vector at a landmark point is modeled.

A common approach is to model the intensity profile as a Gaussian distribution [104].

Because the assumption that intensity profiles can be modeled as Gaussian distributions

may not hold in real applications, Li and Ito [73] used AdaBoosted histogram classifiers

[46] for modeling the intensity profiles and achieved better performance than that by using

Gaussian distributions in face alignment. Kainmüller, Lange and Lamecker [57] used a

heuristic intensity distribution to model liver boundaries.
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2.1.5 Organ Detection and Shape Model Initialization

Given a CT scan, we need to detect the organ of interest and initialize the learned statistical

shape model, so that the organ of the interest in the CT scan is aligned with the initialized

shape model. There are two main types of organ detection methods, learning-based methods

and heuristics-based methods. While learning-based methods use different machine learning

algorithms to learn how to detect organs, heuristics-based methods use priors or heuristics

to detect organs. For example, Ling et al. [74] use marginal space learning with 3D Haar

features and steerable features to learn to detect livers. In contrast, Kainmüller, Lange and

Lamecker [57] use heuristics about the lower rim of the right lobe of the lung to position

the liver shape model below it. Campadelli, Casiraghi and Lombardi [23] detected livers by

using heart segmentation information.

Typically, the statistical shape model is initialized to be the mean shape of all the

training shapes whose correspondence problems are solved.

2.1.5.1 3D Organ Detection using Marginal Space Learning [124][125]

Learning-based object detectors achieve great performance in many different object detec-

tion applications, such as face detection [115] and pedestrian detection[116]. The basic idea

of learning-based object detection is to train a classifier that can determines whether an

input hypothesis is the hypothesis of interest and assign it a classification score, usually in

the range [0 1]. The full parameter space is then quantized into a large number of hypothe-

ses. Each hypothesis is tested with the learned classifier and the hypotheses with the best

classification scores are selected as the output. However, as the dimension of parameter

space increases, the number of hypotheses increases exponentially. One observation that

marginal space learning (MSL) [124][125] or incremental parameter learning (IPL) [75] use

to deal with this problem is that in many real applications the posterior distribution is

clustered in a small region in the high-dimensional parameter space. For this reason, it is

unnecessary to perform the uniform and exhaustive search in the high-dimensional param-

eter space. In MSL, the dimensionality of the search space is gradually increased. Consider

the 3D organ detection problem: to find the bounding box including the organ as closely
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as possible in a 3D CT volume. The parameter space is 9D (3D positions, 3D scales and

3D orientations). Position T is the center of the bounding box of the organ, scale S is

its size, and orientation R is in terms of the three Euler angles. The 3D organ detection

problem is decomposed into three steps: position estimation, position-scale estimation and

finally position-scale-orientation estimation. The high-level idea behind the MSL algorithm

is given in Algorithms 1-2.

In testing, for every 3D object box candidate in the test CT volume, the position classi-

fier, CT, is first used to determine whether a 3D object box candidate contains an organ of

interest. The top m candidates are kept and augmented with n scales. After this augmenta-

tion, we have a set of mn 3D object box candidates. Then, the position-scale classifier, CS,

is used to discriminant the set of candidates and the best m candidates are kept. Finally,

the top m candidates from the classification results generated by the position-scale classifier

are kept and augmented with n orientations. After this augmentation, we have a set of

mn 3D object box candidates. Then, the position-scale-orientation classifier, CR, is used to

discriminant the set of candidates and the best m candidates are kept as the final output.

Using MSL algorithm for testing is given in Algorithm 3.

MSL has used extensively to detect livers [74], heart chambers [124][125], Ileo-Cecal Valve

[75] in CT volumes. Recently, Zheng et al. [126] further improved MSL by using better

representation of a rotation matrix in which Euler angles are replaced with quaternions and

constrained spaces for object position, orientation and scale.

2.1.6 Boundary Refinement

After the detection and initiations are done, the boundaries of the organ of interest in CT

scans are refined iteratively as shown below.

• Step 1. For a given vertex point, refine its location by searching for a new point in

the neighborhood along the normal direction such that the intensity profile of the new

point best fits the boundary intensity model learned for this vertex point.

• Step 2. Find the parameters of the statistical shape model that best fits the whole set

of new vertex points obtained in the first step
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Algorithm 1 MSL algorithm
Step 1. For training, a set of 3D organs are hand-labeled with their bounding boxes

{T,S,R}.

Step 2. Record a set of n position samples {T1, . . . ,Tn} randomly sampled around the

true object positions {T}.

Step 3. Set parameters S and R with the mean values S∗ of {S} and R∗ of {R} as priors.

Step 4. Compute the distances distc((Ti,S∗,R∗), (Tt,St,Rt)), i = 1, . . . , n.

distc((Ti,S∗,R∗), (Tt,St,Rt) = ||Ci − Ct|| (2.8)

where Ci and Ct are the centers of the sampling box (Ti,S∗,R∗) and the ground truth box,

(Tt,St,Rt), respectively. ||Ci − Ct|| is the Euclidean distance between the two centers.

Step 5. The box samples {(Ti,S∗,R∗), . . . , (Tn,S
∗,R∗)} are divided into positive �+

T if

distc((Ti,S∗,R∗), (Tt,St,Rt) < θ1 or into negative �−T if distc((Ti,S∗,R∗), (Tt,St,Rt) >

θ2

Step 6. Train a classifier CT to discriminate �+
T from �−T based on extracted image features.

Step 7. Use CT to classify training samples.

Step 8. Top m candidates are retained as {(T′1,S∗,R∗), . . . , (T′m,S∗,R∗)}

Step 9. Each candidate (T′i,S
∗,R∗) i = 1, . . . ,m is augmented with n samples from the

scale space, resulting in {(T′i,S1,R
∗), . . . , (T′i,Sn,R

∗)}

Step 10. Similarly, the above mn samples are divided into �+
S if

distb((T′i,Sj ,R
∗), (T′t,St,Rt) < τ1 or into negative �−S if distb((T′i,Sj ,R

∗), (T′t,St,Rt) >

τ2

distb(box1, box2) =
8∑
i=1

||vi1 − vi2||/8 (2.9)

where vi1 and vi2 are the i-th vertex of box1 and box2, respectively. This distance is based

on all corners of the box, not just the center

• Step 3. Goto Step 1 until the convergence conditions are met.
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Algorithm 2 MSL algorithm (cont.)

Step 11. Train a classifier CS to discriminate �+
S from �−S using image features.

Step 12. Use CS to classify samples in training (e.g., the above mn samples).

Step 13. Top m candidates from Step 12 are retained as {(T′1,S′1,R∗), . . . , (T′m,S′m,R∗)}

Step 14. Each candidate ((T′i,S
′
i,R

∗)) i = 1, . . . ,m is augmented with n samples

{(T′i,S′i,Rj), . . . , (T′i,S
′
i,Rn)} that have different orientations sample from a uniform

distribution.

Step 15. Similarly, the above mn samples are divided into �+
R if

distb((T′i,S
′
i,Rj), (T′t,S

′
t,Rt) < η1 or into negative �−R if distb((T′i,S

′
i,Rj), (T′t,S

′
t,Rt) >

η2

Step 16. Train a classifier CR to discriminate �+
R from �−R using image features.

Algorithm 3 MSL algorithm for testing
Step 1. For every 3D object box candidate in the test CT volume, use CT to classify

whether it contains an organ of interest.

Step 2. Top m candidates are retained as {(T′1,S8
1,R

8
1), . . . , (T′m,S

8
m,R

8
m)}

Step 3. Each candidate (T′i,S
8
i,R

8
i) i = 1, . . . ,m is augmented with n samples from the

scale space, resulting in {(T′i,S1,R
8
i), . . . , (T

′
i,Sn,R

8
i)}

Step 4. Use CS to classify the above mn samples from Step 3.

Step 5. Top m candidates from Step 4 are retained as {(T′1,S′1,R8
1), . . . , (T′m,S

′
m,R

8
m)}

Step 6. Each candidate ((T′i,S
′
i,R

8
i)) i = 1, . . . ,m is augmented with n samples

{(T′i,S′i,R1), . . . , (T′i,S
′
i,Rn)} that have different orientations sample from a uniform

distribution.

Step 7. Use CR to classify samples the above mn samples from Step 6

Step 8. Top m candidates in Step 7 are retained as {(T′1,S′1,R′1), . . . , (T′m,S
′
m,R

′
m)} as

the final output.

2.1.7 Applications

Kainmüller, Lange and Lamecker [57] use the statistical shape model built from [72] as their

liver model and a heuristic intensity distribution to model liver boundaries. Ling et al. [74]
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use hierarchial learning to learn a coarse-to-fine liver model and their method is fast. Okada

[82] combined both probabilistic atlas and statistical shape models for liver segmentation.

Heinmann [52][51] proposed a method based on a genetic algorithm, a statistical shape

model and a deformable model for liver segmentation.

2.1.8 Review for Shape Constrained Automatic Segmentation of the Liver Based on a

Heuristic Intensity Model[57]

Kainmüller, Lange and Lamecker [57] described an automatic method for 3D liver segmen-

tation in CT volumes. Their method is a combination of an active shape model and a

constrained free-form segmentation. After a standard active shape model based segmenta-

tion is finished, they perform a so-called free form segmentation step to further refine the

segmentation. The correspondence problem is solved by using a geometric approach that

is based on minimizing the distortion of the correspondence mapping between two differ-

ent surfaces [72]. The statistical shape model built from [72] is used as their liver model,

principal component analysis is used to model the variations of the shapes, and a heuristic

intensity distribution is used to model liver boundaries. To detect the liver, they first use

the information from the DICOM header and detect the lungs which appear as very dark

area in the images. The liver model is then translated and rotated, based on the location

and orientation of the detected lungs.

Their shape model [72] is built from 43 CT volumes where a 3D triangular mesh model

is crated for each liver in a each CT volume. Their overall performance is ranked first in

a recent liver segmentation competition. The average symmetric surface distance over 10

testing volumes is 1.1 mm and the system takes 15 minutes to generate the liver segmentation

for a CT volume.

2.1.9 Review for Hierarchical, Learning-Based Automatic Liver Segmentation[74]

Ling et al. [74] used hierarchial shape models and a learning-based approach for automatic

liver segmentation. They proposed a hierarchial and coarse-to-fine shape model (e.g, a

shape pyramid) to model livers. For each layer, principal component analysis is used to
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model the shape variations. To model boundary intensity, their idea is to use a boundary

classifier to learn a probabilistic boundary response indicating whether a point belongs to

a boundary. Because of the heterogeneity of the texture pattern along liver boundaries,

they further enhance the above idea by using path dependent boundary classifiers. In other

words, a liver surface is further decomposed into five types of patches, liver-lung, liver-heart,

liver-kidney, liver-tissue and liver-misc. For each type, a boundary classifier is learned. In

testing, the boundary classifier with the maximum boundary response among the five is

selected.

For liver detection, marginal space learning is used to find the positions, rotations and

scales of the bounding box for the detected liver. After a liver is detected, a common

approach is to use the mean shape to initialize the learned shape model. In contrast with

the common approach, they use marginal space learning to learn how to initialize the learned

shape model (e.g, estimating the first three coefficients for principal component analysis)

based on the detection results. After this learning approach is used to initialize the shape

model, the learned model is placed in the detected bounding box. Both liver detection and

initialization are done on the coarse layer.

For their hierarchial shape model, they propose a hierarchial boundary refinement that

can be seen as a coarse-to-fine generalization to the standard boundary refinement. After

the learned shape model is initialized on the coarsest layer, the following loop is iterated.

The standard boundary refinement is performed for several iterations: patch-dependent

boundary classifiers are used to estimate the displacement vector and then principal com-

ponent subspace projection is performed to find the closest approximation to the addition

of the current estimated displacement to the current shape. If the shape model is on the

finest layer, the resultant shape model is the final segmentation output. Otherwise, the

shape model is upsampled to the next finer layer with thin-plate spline warping and the

above loop continues.

Their system is tested on 75 3D CT volumes. After excluding outliers, their mean errors,

measured as the average symmetric surface distance, are 1.59 ± 0.50 mm and the median is

1.38mm by using 5-fold cross validation. The system takes 12 seconds to generate the liver

segmentation for a CT volume.



22

2.2 Active Contour (Snakes) and Level Set Methods

The active contour (snake) methodology places an initial contour on the image in the vicinity

of the region to be detected and uses an energy function to iteratively modify the contour

until it “fits” the region. Let C : [0, 1] → R × R denote an explicit planar parameterized

curve. The energy functional minimized in [59] is

E(C) = α

∫ 1

0
Eint(C(p))dp+ β

∫ 1

0
Eimg(C(p))dp+ γ

∫ 1

0
Econ(C(p))dp (2.10)

The first term, the internal energy, measures the regularity and smoothness along the curve.

While the second term, the image energy, directs the active contour to the desired image

properties (e.g., strong gradients), the third term, the external energy, takes user-defined

constraints or prior knowledge on the active curve into considerations. α, β and γ are

user-defined weights to control the contribution of each energy term. The drawbacks of

the snake algorithm include that it can not deal with topological changes, and it requires

explicit contour representations. In contrast, level set methods, which use implicit contours,

[83][95][32] can remove these drawbacks.

In the implicit contour representation, a contour is described by a signed-distance-

function that given a point returns the distance to the contour. Inside the contour, this

distance is negative, and outside it is positive. The set of points in which the distance is

0, is called the iso-surface or the zero level set. Let φ : R × R × {0 ∪ R+} → R denote a

time-dependent signed distance function. Let φ(x, y, t) denote the distance from the contour

to the point (x, y) ∈ R × R at the time t ∈ {0 ∪ R+}. So, a contour C(t) at time t in the

two-dimensional plane is represented as the zero level set when it satisfies

C(t) = {(x, y) ∈ R×R|φ(x, y, t) = 0}. (2.11)

Consider the evolution equation for φ

∂φ

∂t
= −| 5 φ|F (2.12)

where 5φ = [∂φ∂y
∂φ
∂y ]t, |v| is the magnitude of a vector v, and F is a speed function which can

take a variety of parameters and return a real value. Given an initial contour (e.g., C(t) or
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φ(x, y, t) for some known t) and an evolution equation for φ, we can estimate φ(x, y, t+ δt)

at t+ δt for small δt by, for example, the Euler method.

Xiong et al. [118] used active contours and variational level sets for liver segmentation.

Dawant et al. in [36] proposed a level set algorithm with the manual contour initialization

and correction for liver segmentation. Mintz, Raicu and Furst [80] used Gabor filtering and

active contours for liver segmentation. Chi et al. [31] used rotational template matching

and k-means clustering to exclude the irrelevant areas for liver segmentation and then ap-

plied gradient vector flow geometric snake for liver segmentation. Furukawa, Shimizu and

Kobatake [33] first used rough extraction based on maximum a posterior probability esti-

mation and then a level-set method for more precise liver segmentation. Kompalli et al. [70]

used both Markov random fields and active contours for refinement for liver segmentation.

2.3 Graph Cuts

Graph cuts is another common method for image segmentation, made popular by [16][69][99].

2.3.1 Energy Minimization

Given a set of n pixels P and a set of two labels L = {0, 1} where 0 represents the background

and 1 represents the foreground, the goal in many computer vision problems is to find a

labeling (l1, . . . , ln), li ∈ L (i.e, a mapping from P to L) which minimizes a standard form of

the energy function [69] as shown below .

∑
p∈P

Dp(lp) +
∑
p,q∈N

Vpq(lp, lq) (2.13)

where N ⊂ P × P is a set of all pairs of two adjacent pixels. Dp(lp) is a data term that

measures the cost of assigning the label lp to pixel p, and Vpq(lp, lq) is a smoothness term

that measures the cost of assigning the labels lp and lq to two adjacent pixels p and q.

Although maximizing an arbitrary energy function like (2.13) over the binary n-cube

Bn is NP-hard [16], previous work [87][48][15][69][44][62][67] showed what energy functions

can be exactly minimized with max flow/min cut techniques and provided details on how

to construct a weighted graph with respect to a given energy function. For example, if
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the energy functions are submodular (or regular)[69], they can be minimized using max

flow/min cut techniques [1].

2.3.2 Applications

Campadelli, Casiraghi and Lombardi [23] detected livers by using heart segmentation infor-

mation and then used a graph-cut algorithm to segment the livers. Beichel et al. [11] used

interactive graph-cuts and segmentation refinement for liver segmentation.

2.4 Adaptive Thresholding, Morphology and Pixel/Voxel Classification

The purpose of adaptive thresholding and pixel/voxel classification is to decide whether a

pixel or voxel belongs to an organ of interest based on its or its neighboring features. The

commonly used features are intensities or textures and many different types of classifiers [39]

can be used for this classification task. After classifying each pixel or voxel, we typically

need to use morphology operations [98] such as erosion, dilation, opening and closing to

group the pixels or voxels with similar labels to meaningful regions or volumes.

Massoptier and Casciaro [78] used adaptive thresholding to detect livers and refined the

segmentations by graph cut. Campadelli, Casiraghi and Lombardi [23] detected livers by

using heart segmentation information and then used adaptive thresholding and morphology

as an alternative to graph cut to segment livers. Campadelli, Casiraghi and Pratissoli used a

fast marching technique for abdominal organs segmentations. Rusko [89] et al. mainly used

region-growing with various preprocessing and post-processing steps to segment livers. Ma

and Yang [76] used expectation maximization and morphological filters for liver segmenta-

tion. Pham et al. [86] segmented livers based on texture information. Rikxoort, Arzhaeva

and van Ginneken [110] used voxel classification and atlas matching for liver segmentation.

Susomboon, Raicu and Furst [103] proposed a hybrid approach consisted of intensity-based

partition, region-based texture classification, connected component analysis and threshold-

ing for liver segmentation. However, their approach is very time-consuming. In contrast

with active shape models, Seghers et al. [94] incorporated both local intensity and local

shape models for liver segmentation. Schmidt et al. [91] combined pixel classification and
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region growing with a semantic knowledge base for liver segmentation. Adaptive threshold-

ing and morphology plays an important role in [60] where Kobashi and Shapiro proposed

a knowledge-based approach for organ segmentation from CT images. In the following, we

review their work in detail.

2.4.1 Review for Knowledge-based organ identification from CT images [60]

Kobashi and Shapiro [60] proposed a knowledge-based approach for organ segmentation from

CT images. Their three main ideas are adaptive thresholding, negative-shape constraints

that rapidly rule out infeasible segmentations, and progressive landmarking that extract

organs based on the confidences of already found organs.

Here is a summary of the knowledge used in this paper.

• Position in the ordering of gray tone levels amon the organs. For example, bones have

the highest gray tones, while the air has the lowest gray tones.

• Relevant gray-tone range. The relevant range is the range within which the threshold

that can segment the organ correctly lies.

• Height of gray-tone cliff. Assume that there exists a gray level threshold that can

segment a target organ. The height of the “cliff” is the range in which such thresholds

fall. In contrast with bones that have very high cliffs, livers and spleens have relatively

low cliffs.

• Location relative to some stable landmarks (the aorta and the spine). The coordinate

system relative to these landmarks is used.

• Adjacency with other organs. The angle of direction relative to the body-based coor-

dinate system and the distance between two organs of interest are used to represent

the relative position.

• Size in terms of the area of the slice for each approximate level of slice. The size is

given by the number of pixels in the area of the organ.
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• Relations with slices at other levels. The overlap ratio of the regions of interest between

adjacent slices is used as a constraint for this relation. The overlap ratio must fall

within a certain range or it would be a sign of a wrong segmentation.

• Positive and negative shape constraints. While positive shape constraints describe the

shape of acceptable objects, negative ones describe what is unacceptable.

The high-level idea of their algorithm is listed in Algorithm 4.

Algorithm 4 Algorithm in [60]

Step 1. h ⇐ the high end of the relevant gray tone range predefined for the organ of

interest

Step 2. l⇐ the low end of the relevant gray tone range predefined for the organ of interest

Step 3. t⇐ h

while t > l do

Step 4.1. Execute the thresholding operation with t.

Step 4.2. Execute the connected components operation on the binary image produced

by the previous step.

Step 4.3 Check different properties (area check, location check, positive/negative shape

check, overlap check, collision check).

if There are no suitable candidates then

Step 4.4. Goto Step 5.

end if

Step 4.5. Select the best candidate from the candidates at t.

Step 4.6 Decrease t by some predefined constant (e.g., 10).

end while

Step 5. Perform “slope check” to select the best threshold. {Check the rate of increase

of the area of the candidate region with respect to the reduction of threshold and select

the least rate increase.}

Step 6. Execute the predefined morphological operations to get the final result.
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Chapter 3

INITIAL RESULTS

3.1 Preliminary Work

In the following three sections, we introduce our preliminary methods [28][29][30] and report

the initial results. The chapter is organized as follows. In section 3.1.1, we explain how

we solve 3D point correspondence by using minimum description length with 2DPCA [29].

In Section 3.1.2., we explain how to learn statistical shape models by using tensor-based

dimension reduction methods [30] after the correspondence problem is solved. We explain

how we can use a min s-t cut with side constraints to help in boundary refinement [28] in

Section 3.1.3. To highlights these three preliminary methods, Figures 3.1 is generated by

replacing the corresponding three components in Figure 2.1 with new ones. In Section 3.2,

we will describe some current work on organ detection and boundary refinement and show

some very initial results and ideas.

3.1.1 3D Point Correspondence by Minimum Description Length with 2DPCA

3.1.1.1 2DPCA

In contrast with PCA, two-dimensional principal component analysis [120] (2DPCA) is

based on 2D matrices rather than 1D vectors. In other words, in contrast with conventionally

using a vector representation to represent a shape, 2DPCA represents a shape by a two-

dimensional matrix representation. The idea behind [120] is to project a 3×M shape matrix

X onto an M × 1 vector b by the linear transformation.

c = Xb (3.1)

The 2DPCA scatter matrix G is defined as

G =
N∑
i=1

(Xi − X̄)t(Xi − X̄) (3.2)
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Training CT Volumes 

MDL with 2DPCA for 3D 
Point Correspondence 
(Section 3.1.1) 

Tensor-based Statistical 
Shape Models (Section 
3.1.2)  

Learned Statistical 
Shape Model 

Learned Boundary 
Intensity Model 
 

Known point correspondences 

Learning Boundary 
Intensity Model 

Learning Organ 
Detection 

Organ Detector 

(a) Training phase.

Graph Cut based Boundary 
Refinement (Section 3.1.3) 

Organ Detection 

Organ Detector 

Detected Bounding Box 

A Testing CT Volume 

Final Shape 

Learned Boundary 
Intensity Model 
 

Learned Statistical 
Shape Model 

Shape Model Initialization 

Initial Shape 

(b) Testing phase.

Figure 3.1: Training and testing phases for active shape models with our preliminary meth-

ods. These preliminary methods are shown with dash lines.
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where

X̄ =
∑N

i=1 Xi

N
(3.3)

Similar to PCA, the goal of 2DPCA is to find a projection axis b that maximizes btGb.

The optimal K projection axes bk, k = 1, . . . ,K that maximize the above criterion are the

eigenvectors of G corresponding to the largest K eigenvalues. For a shape matrix X, its

reconstruction X̃, defined below, can be used to approximate it.

X̃ = X̄ +
K∑
k=1

clblt (3.4)

where ck = (X− X̄)bk.

3.1.1.2 Minimum Description Length with 2DPCA

We extend the MDL-based objective function, (2.4), to 2DPCA. In other words, instead

of using the eigenvalues computed by PCA for finding the best correspondence for a set of

3D shapes, we propose to use those computed by 2DPCA. We propose a gradient descent

approach to minimize the objective function based on the ideas in Section 2.1.1.2 to compute

the Jacobian matrix for the gradient of the objective function. In order to reuse (2.5) and

(2.6), (2.7) must be extended to 2DPCA. Let the eigen-decomposition of G be defined by

D = UTGU (3.5)

where D is the diagonal matrix composed of the eigenvalues of G, and U is a matrix

composed of eigenvectors of G. The extension of (2.7) to 2DPCA is defined by

∂D
∂Xi(j, k)

= Ut(
N∑
z=1

((δz==iJjk−
1
N

Jjk)t(Xz− X̄)+(Xz− X̄)t(δz==iJjk−
1
N

Jjk)))U (3.6)

where Jjk is a binary matrix all of whose elements are zeros, except the element at position

(j,k), which is one. δz==i is defined to be one if z=i. Otherwise, δz==i is defined to be zero.

3.1.1.3 Experimental Results for 3D Point Correspondence

Our dataset consists of 3D triangular mesh models of 20 livers, 17 left kidneys, 15 right

kidneys, and 18 spleens as shown in Figure 3.2. All 3D meshes are constructed from CT
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scans of different patients1. The 3D point correspondence problems among different 3D

mesh models of the organs are solved by both the state-of-the-art MDL-based approach [34]

and the proposed approach. The software library [50][51] that implements the MDL-based

approach as described in Section 2.1.1.2 is used for its implementation and is also further

modified to implement the proposed approach. All the mesh models of the same organ have

the same number of vertices (2563) and the same number of faces (5120), and all vertices

are used as landmarks to represent the shapes.

We follow a standard procedure extensively used in [34][35][102][51] to compare differ-

ent point correspondence methods when the ground truth correspondences among different

shapes are not available. Given the correspondences computed by different methods, the

standard procedure is to measure the difference between an unknown shape and its recon-

struction. Leave-one-out cross validation is used to determine how accurately an algorithm

will be able to predict data that it was not trained on. The Euclidean distance (i.e, the sum

of the distances between all pairs of corresponding landmarks) and Hausdorff distance are

used to measure the shape difference between two shapes.

Even though different correspondence methods use different criteria [35][102] to find the

correspondences, the standard procedure [34][35][102][51] uses PCA to model the variations

of the shapes whose correspondences are estimated. A potential problem here is that using

PCA is biased to the MDL objective function, because the sum of eigenvalues is a good in-

dicator for estimating the reconstruction errors, and the computation of the MDL objective

function [34] involves the eigenvalues of PCA. To avoid this potential problem and to be

more fair, the original MDL method uses PCA to model shapes, while our extension uses

2DPCA to model shapes.

Figures 3.3 and 3.4 show the average leave-one-out reconstruction errors for different

organs. From these two figures, it is clear that the combination of the proposed MDL

for 2DPCA and reconstruction using 2DPCA is better than the combination of MDL for

PCA and reconstruction using PCA in all test data sets. In addition, as the number of

eigenvectors in use increases, the reconstruction error decreases, due to the use of more

1We constructs the shape of an organ from manual segmentation of CT scans of a patient by using
marching cubes in ITK-SNAP.
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variables to encode the shape variations. However, as the number of eigenvectors in use

increases, the differences between the reconstruction errors of these two methods decreases

(Figure 3.3), while as the numbers of eigenvectors in use increases, the difference between

the reconstruction errors of these two methods can increase accordingly (Figure 3.4). One

possible explanation is that the MDL objective functions and the error measures being

minimized are all related, to some degree, to Euclidean distances, and so their performances

may potentially converge to similar reconstruction errors in terms of Euclidean distance if

there is infinite training data. However, their performances may not converge to similar

reconstruction errors in terms of Hausdorff distance.

(a) Livers (b) Left kidneys

(c) Right kidneys (d) Spleens

Figure 3.2: The 3D triangular meshes of different organs we use in the experiments.
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Figure 3.3: Generalization ability comparisons in terms of Euclidean distance in different

datasets.

3.1.1.4 Summary

We generalize the MDL-based objective function to 2DPCA and propose a gradient descent

approach to minimize the objective function. From our experimental results on different

sets of 3D shapes of different organs, the combination of the proposed MDL for 2DPCA

and reconstruction using 2DPCA is significantly better than the combination of MDL for

PCA and reconstruction using PCA.

Instead of using the reconstruction errors, which depend on the particular reconstruction

methods, to compare different correspondence methods, we plan to use some datasets whose

ground truth correspondences are known to directly compare the proposed method with
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(c) Right kidneys
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Figure 3.4: Generalization ability comparisons in terms of Hausdorff distance in different

datasets.

other existing methods. In addition, many different methods [88][108][109] for modeling

shapes have been shown to have better potential than PCA. How to generalize MDL-base

objective functions to these different approaches is an important direction we will pursue.

Furthermore, we would like to relax the assumptions Davies et al. made in [34]. One such

assumption is that the projected coefficients in different eigenvectors are independent. This

assumption may not hold in 2DPCA or in the general case. This work [29] will appear in the

proceeding of International Conference of the IEEE Engineering in Medicine and Biology

Society (EMBC’09).
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3.1.2 Tensor-Based Dimension Reduction Methods: An Empirical Comparison on Statis-

tical Shape Models of Organs

After the correspondence problem is solved, we want to learn statistical shape models from

the set of shapes whose 3D point correspondences are known. Modeling shape variations

is a significant step in active shape models [104] that is widely used in model-based medi-

cal image segmentation. A standard method for this step is principal component analysis

(PCA). Unlike PCA that uses vector-based representations, varied tensor-based dimension-

reduction methods have been recently proposed and achieved better performances than

PCA in face recognition [120][111][117]. In contrast with conventionally using a vector

representation, tensor-based dimension-reduction methods can represent a shape by a two-

dimensional matrix directly or can represent the whole training set of shapes as a tensor [64].

For example, 2DPCA [120] constructs the image covariance matrix directly by using the

original image matrices without transforming them into 1D vectors and uses its eigenvectors

as principal components. The parallel factor model (Parafac) [49][64] and the Tucker de-

composition [107][64] are two major tensor decomposition methods that decompose a tensor

into components.

We have not seen any work that has used tensor-based dimension-reduction meth-

ods in medical image analysis except [53] that compared 2DPCA [120] with PCA on a

normal/abnormal left ventricle shape classification task. In contrast with [53], which mainly

focuses on classification, our work requires accurate 3D reconstructions of 3D organs whose

shape can vary significantly.

We propose to model shape variations with tensor-based dimension-reduction methods.

We will report on our empirical comparison of four reconstruction methods, including PCA,

2DPCA, Parafac and the Tucker decomposition, on several different organs such as livers,

spleens and kidneys in Section 3.1.2.2.

3.1.2.1 Tensor-Based Dimension Reduction Methods

A tensor is a generalization of vectors and matrices [64]. The order (or mode) of a tensor

is the number of dimensions. We use a third-order tensor X ∈ R3×M×N to represent the
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whole training set of N shapes. The first mode represents the x,y,z coordinates of a point,

the second mode represents a point id and the third mode represents a patient id. Although

we focus on using third-order tensors in this paper, it is easy to extend our concepts to

higher-order tensors. For example, if the above training set changed at regular intervals of

time, then a fourth-order tensor in which the fourth mode represents time can be used.

3.1.2.1.1 Parallel Factor Model Parafac [49][64] factorizes a tensor into a weighted

sum of component rank-one tensors [64]. In other words, given a tensor X ∈ RI×J×K ,

Parafac decomposes it as

X ≈
L∑
l=1

λlal ◦ bl ◦ cl (3.7)

where al ∈ RI , bl ∈ RJ , cl ∈ RK , λl ∈ R1 for l = 1, . . . , L and ◦ represents the vector outer

product [64]. al,bl, cl are the component rank-one tensors for l = 1, . . . , L and their roles in

tensors or multilinear algebra are conceptually similar to that a basis plays in linear algebra.

λl is the weight for a order-3 tensor generated by al ◦bl ◦cl for l = 1, . . . , L. The alternating

least squares (ALS) method [49][64] is commonly used to find the Parafac decomposition.

After the decomposition is computed, for a test shape, different methods [112][113] can

be used to find the associated coefficient vectors and to compute the reconstruction that

approximates it. In this paper, we follow the linear projection method in [112]. Given a

shape matrix X, we calculate its reconstruction X̃ =
∑L

l=1 clλlal ◦ bl to approximate it by

solving the following equation.

min
X̃
||X− X̃|| (3.8)

where ||X|| is the Frobenius norm of X. cl is the weight for a order-2 tensor generated by

λlal ◦ bl.

3.1.2.1.2 Tucker Decomposition In contrast with Parafac, which decomposes a ten-

sor into rank-one tensors, the Tucker decomposition is a form of higher-order principal

component analysis that decomposes a tensor into a core tensor multiplied by a matrix
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along each mode [64]. Given a tensor X ∈ RI×J×K , the Tucker decomposition is given by

X ≈ G×1 A×2 B×3 C (3.9)

=
P∑
p=1

Q∑
q=1

R∑
r=1

gpqrap ◦ bq ◦ cr (3.10)

where G ∈ RP×Q×R is called the core tensor, A ∈ RI×P , B ∈ RJ×Q,C ∈ RK×R, ap ∈ RI×1

is the p-th column in A, bq ∈ RJ×1 is the q-th column in B, cr ∈ RK×1 is the r-th column

in C and ×n is the n-mode matrix product operator for multiplying a tensor by a matrix

in mode n [64]. gpqr, used as shorthand for G(p, q, r), is a weight for combining ap ◦bq ◦ cr.

ALS can be used to find the Tucker decomposition.

Let V(3) be the matrix formed by mode-n matricizing2 [64] the tensor G×1 A×2 B with

respect to the third mode. Based on the above linear projection idea [112], given a shape

vector x, we calculate its reconstruction x̃ =
∑L

l=1 clvl where vl is the l-th column of V(3)

to approximate it by solving the following equation.

min
x̃
||x− x̃|| (3.11)

3.1.2.2 Empirical Comparisons of PCA, 2DPCA, Parafac and Tucker Decomposition on

Statistical Shape Models of Organs

We use the same dataset as in Section 3.1.1.3 and use [50] to find correspondences among

shape models. The tensors are constructed in a manner similar to that described in

[112][113]. The task is to measure the difference between an unknown shape model and

its reconstruction. We use leave-one-out cross validation to determine how accurately an

algorithm will be able to predict data that it was not trained on. Two different commonly

used metrics, Euclidean distances (i.e, the sum of the distances between all pairs of cor-

responding landmarks) and Hausdorff distance, are used to measure the shape difference

between two shapes. We use the tensor library [7] for tensor decomposition. In addition,

we further investigate how the numbers of components, L, affect the reconstruction errors.

2Mode-n matricizing is a way to convert a tensor to a matrix representation.
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The experimental results are shown in Figures 3.5 and 3.6. From these figures, we

can see that 2DPCA performs best among the four methods, the Tucker decomposition

performs slightly better than PCA, and the Parafac decomposition is the worst. In fact, the

performance differences between 2DPCA and other methods are statistically significant. In

addition, as the numbers of components increase, the reconstruction errors of all methods

and the differences among different methods decrease. While 2DPCA and PCA had similar

computation time in our experiments, the Parafac method and the Tucker decomposition

were an order of magnitude slower.

We attribute the poor performance of the Parafac method to the limited expressiveness

of rank-one tensors and vector outer products. As explained in [120], because the dimension

of the image scatter matrix is much smaller than that of the total scatter matrix, and we

deal with small sample size problems where the number of training examples is much smaller

than the dimensions of a shape, 2DPCA can capture more accurate covariance information

than PCA. Another possible reason is that the spatial dependencies between x, y and z are

better preserved in 2DPCA. Although the Tucker decomposition is a form of higher-order

principal component analysis [64], its marginal improvement over PCA may be ascribed

to the use of the linear projection method to compute the reconstruction, as the potential

power of the tensor may be lost in this step.

3.1.2.3 Summary

We proposed to use different tensor-based dimension-reduction methods to model shape

variations. From our empirical comparisons of the reconstruction errors, 2DPCA is the best

among the four compared methods and the performance differences between 2DPCA and

the other methods are statistically significant.

We are currently applying learned models from these tensor-based dimension-reduction

methods to model-based organ segmentations. We will also investigate different ways

[97][113][117][64] to further improve 2DPCA and tensor decompositions. For example, the

grid-sampling strategy [97] is proposed to further improve the performance of 2DPCA. In

addition, in contrast to using the linear projection method, a multilinear method that can
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Figure 3.5: Reconstruction errors in terms of Euclidean distance for different organs.

simultaneously infer the coefficient vectors in different modes [113] can be used to find better

reconstructions. This work [30] will appear in the proceeding of International Conference

of the IEEE Engineering in Medicine and Biology Society (EMBC’09).

3.1.3 Graph Cuts based Boundary Refinement and Extension

After the organ of interest is detected and the statistical shape is initialized, the boundary

refinement process starts. The basic boundary refinement procedure in Section 2.1.5 can be

easily solved by using iterative EM-like graph cut algorithms [45][119][4][100][77][128][122].
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Figure 3.6: Reconstruction errors in terms of Hausdorff distance for different organs.

In fact, we can view using statistical shape models as adding constraints into conven-

tional graph-cut algorithms [16][69][121]. Different constraints such as shape constraints

[45][123][4][100] or partial labeling constraints [17] have been incorporated into graph cut

algorithms. There are two classes of constraints: hard constraints that must be satisfied

by any solution and soft constraints that may or may not be satisfied. For example, Zeng

et al. [123] considered hard constraints and proved that topology cut, a min cut algorithm

for topology preserving segmentation, is an NP-hard problem, and therefore they provides

an approximation algorithm for it. Boykov and Jolly [17] considered other hard constraints
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such as the ways that some pixels must be foreground pixels or background pixels. In con-

trast with hard constraints, soft constraints typically change the capacities of the edges in

graphs based on shape priors [45][4][100], which can then be exactly solved with min s-t cut

algorithms. The shape priors can be a single template [45][100] or a shape model learned

from training examples [4][128][77].

In contrast, we focus on adding hard constraints to graph cut algorithms for medical

image segmentation as a further extension. In fact, in many computer vision applications,

we are interested in adding hard constraints to help to find better solutions. For example,

we may know the upper bound of the size of an organ in a CT volume. We explain how we

can use min s-t cut with side constraints to further help boundary refinement [28] below.

3.1.3.1 Min s-t Cut Problem with Side Constraints

Formally, we consider a constrained min s-t problem defined as

min ctl s.t.

A

W

 l ≤

b

d

 , l ∈ Bn (3.12)

where the elements of l are decision variables, li, and A, b, c are from a given min s-t cut

problem [1][114]. Intuitively speaking, the elements of l are binary labels on nodes (i.e, 0 for

background and 1 for foreground) and edges in the capacitated graph, A and b reflect the

relationships among labels in the graph, and c gives the capacities of edges. W and d are ad-

ditional hard linear constraints that reflect prior knowledge, and we will refer to them as side

constraints. For example, we can represent the upper bound constraint as
∑

i∈V−{s,t} li ≤ u

where u is some positive constant, V is the vertex set of the given capacitated graph, s and

t are the source and sink nodes, respectively. The reason why
∑

i∈V−{s,t} li ≤ u represents

this constraint is that li for i ∈ V is 0 or 1 and
∑

i∈V−{s,t} li is the size of the foreground

object. Similarly, we can represent the lower bound constraint as −
∑

i∈V−{s,t} li ≤ −l

where l is some positive constant. Note that we only consider linear hard constraints in

(3.12); nonlinear hard constraints can be translated into linear constraints by introducing

new variables called slack variables and additional linear constraints.

We encode size constraints as side constraints. We try two different methods for formu-
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lating size constraints: 1) global bounds and 2) local parts. In the first case, we provide

global upper and lower bounds on the contours of the object to be segmented derived from

training data on which the true contours are drawn. In the second case, by using the slice

above a given slice, we provide upper and lower bounds for each row of the object to be

segmented.

Because (3.12) is 0-1 integer programming, which is generally NP-hard [81], we use

linear programming relaxation and a simple rounding technique (i.e., if a fractional number

is close to 1, we round it to 1 otherwise we round it to 0) as a heuristic to get approximate

solutions; this is a standard approximation approach to solve NP hard problems [114].

3.1.3.2 Experiments on Graph Cuts with size constraints and without size constraints

In our experiments, we used the graph-cut-based active-contour algorithm in [119] for fore-

ground/background segmentation and modified their program so that (3.12) can be solved.

The metrics we use to evaluate our segmentation results were inspired by common precision

and recall measures in information retrieval and are similar to the segmentation accuracy

measure used in the PASCAL visual object class challenge 2007 [41]. The measures we used

to evaluate the foreground/background segmentation are I
S and I

T where S is the area of

the estimated foreground segment, T is the area of the ground truth foreground segment

and I is the area of the intersection of S and T. We will call I
S the precision and I

T the

recall of each segmentation result, since I
S tells us how much of the segmented region ac-

tually belongs to the organ and I
T tells us how much of the actual organ the segmented

region covers. Intuitively, the higher these two measures are, the better the segmentation

performance is. For the medical images in our experiments, the ground truth segmentations

have been performed by the author with the supervision of a medical expert. The goals of

our experiments are to show how graph cuts with additional constraints perform compared

with graph cuts without any constraints, how different size constraints perform and how

constraints and parameters (i.e., upper or lower bounds) can be estimated from training

images.

For the global bounds technique, the upper and lower bounds on size are estimated
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Table 3.1: Quantitative comparisons.

w.o w.o w w

precision recall precision recall

Kidney (local parts) 0.9011(0.076) 0.3130(0.0003) 0.9951(0.000) 0.9110(0.003)

Kidney (global bounds) 0.9011(0.076) 0.3130(0.0003) 0.9816(0.0002) 0.9399(0.0005)

Spleen (local parts) 0.9147(0.0023) 0.8248(0.0621) 0.8348(0.0015) 0.9266(0.0038)

Spleen (global bounds) 0.9147(0.0023) 0.8248(0.0621) 0.8783(0.0117) 0.9014(0.0024)

from multiple training images and are entered manually for each organ. The segmentations

performed on each slice use the same upper and lower bounds. For the local parts technique,

a tracking approach in which the segmentation from the previous image is used as training

data for the current image is employed. In this approach, each row of the designated organ

in the training image provides separate upper and lower bound size constraints, which taken

together can be thought of as a shape constraint.

Quantitative comparisons of both techniques can be found in Table 3.1, which gives the

means and variances of precision and recall with and without constraints. The first two rows

of Table 3.1 give the results for tracking a kidney over 6 image slices, while the second two

rows give the results for tracking a spleen over 10 image slices. For the kidney experiments,

size constraints (both global bounds and local parts) significantly improved both precision

and recall. For the spleen experiments, recall was significantly improved, but precision

went down at the same time. Performance was better for global bounds constraints than

local parts constraints in all cases. Our explanation for this observation is that although

local part constraints are more expressive than global bounds constraints, they may be too

restrictive. In particular, putting a constraint on each row of an organ does not allow its

shape to change from slice to slice.

Figure 3.7 illustrates the use of constraints to improve segmentation results. The figure

shows how the graph cut algorithm with constraints tracks the contour of a left kidney
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more accurately than that without constraints. Because there are no strong edges around

the ground truth shapes of the kidneys in the testing images, the graph cut algorithm

with no constraints failed. In contrast, the graph cut algorithm with local part constraints

accurately tracks the contour.

(a) Initial contour (without

constraints).

(b) Result in the first test-

ing image (without con-

straints).

(c) Result in the last test-

ing image (without con-

straints).

(d) Initial contour (with

constraints).

(e) Result in the first testing

image (with constraints).

(f) Result in the final

testing image (with con-

straints).

Figure 3.7: A comparison between graph cut without any constraints and that with multiple

part size constraints on a contour tracking example. The first row shows results without

constraints on testing images and the second row shows results with size constraints on

testing images. Images (a) and (d) show the same initial contour in the first testing image.

From these results, we can see that size constraints can be used to significantly improve

the performance of foreground/background segmentation and that shape constraints are
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useful when the shape of the organ being tracked is relatively constant from slice to slice.

In addition, our approximation algorithm produced good approximation results in these

experiments. This work [28] was published in the proceeding of the International Conference

on Pattern Recognition (ICPR’08).

3.2 Current Work

In this section, we describe some current work on organ detection and boundary refinement

and show some very initial results and ideas.

3.2.1 An Boosting Based Organ Detection Approach

Currently, we treat organ detection as a binary classification problem. We divide each CT

slice into 32x32 nonoverlapping images blocks and learn a classifier to determine whether an

image block belongs to an organ of interest. We use both global features and local features.

The global features used are the gray-tone histogram of the image slice and its slice index,

which indicates its position in the full CT scan. The local features used include the position

of a block, the mean and variance of its intensity values, and its intensity histogram. The

SVM linear classifier is used as a weak classifier, and Adaboosting is used to combine these

weak classifiers.

We have run a set of very preliminary experiments for detection of livers, kidneys, and

spleens. The CT images from which 20 livers, 17 left kidneys, 15 right kidneys, and 18

spleens were built in our previous experiments were used for these experiments (Figure 3.2).

There are 3024 to 4159 slices for each organ, depending on its visibility in a slice. The

organs are partitioned into two disjoint and roughly equal-size sets where one is used as a

training set and the other is used as a testing set. For each organ, a strong classifier that

results from combining 20,000 weak classifiers with Adaboosting is used in the experiments.

Table 3.2 shows the confusion matrices for each organ detection, and Figures 3.8 to 3.11

show some examples of the different organ detections.

A noticeable behavior is that many false positive and false negative examples occurred

near the boundaries of organs. One possible explanation for this behavior is that a training

image block is seen as a positive example even if the block only overlaps the ground truth
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Table 3.2: Training and testing confusion matrices for different organ detection.

(a) Livers (training)

Positive (Predicted) Negative (Predicted)

Positive (Actual) 42147(96.23%) 1653(3.77%)

Negative (Actual) 19597(4.57%) 409691(95.43%)

(b) Livers (testing)

Positive (Predicted) Negative (Predicted)

Positive (Actual) 42711(91.23%) 4107(8.77%)

Negative (Actual) 35804(6.57%) 509004(93.43%)

(c) Left kidneys (training)

Positive (Predicted) Negative (Predicted)

Positive (Actual) 5499(96.96%) 171(3.04%)

Negative (Actual) 24482(6.58%) 347498(93.42%)

(d) Left kidneys (testing)

Positive (Predicted) Negative (Predicted)

Positive (Actual) 4905(73.83%) 1739(26.17%)

Negative (Actual) 31211(6.43%) 454433(93.57%)

(e) Right kidneys (training)

Positive (Predicted) Negative (Predicted)

Positive (Actual) 4317(98.61%) 61(1.39%)

Negative (Actual) 13688(5.00%) 260206(95.00%)

(f) Right kidneys (testing)

Positive (Predicted) Negative (Predicted)

Positive (Actual) 4937(80.33%) 1209(19.67%)

Negative (Actual) 42617(8.70%) 447109(91.30%)

(g) Spleens (training)

Positive (Predicted) Negative (Predicted)

Positive (Actual) 10760(96.75%) 362(3.25%)

Negative (Actual) 17154(3.98%) 413580(96.02%)

(h) Spleens (testing)

Positive (Predicted) Negative (Predicted)

Positive (Actual) 6010(75.36%) 1965(24.64%)

Negative (Actual) 23489(4.85%) 460824(95.15%)

segmentation with a few pixels. Instead of treating the detection problem as a binary

classification problem (i.e., a block is either positive or negative), a possible remedy is

treating the detection problem as a regression problem in which the label of a block is

proportional its overlap area with the ground truth segmentation. We are investigating how

to combine these initial detection results to get a final detection result.

3.2.2 Boundary Intensity Model and Shape Model Initialization

Currently, we use the standard approaches for these two tasks. The intensity profile is

modeled as a Gaussian distribution [104], and the shape model is initialized to be the mean

shape of all the training shapes whose correspondence problems are solved. Figure 3.12

shows some comparisons between the ground truth shapes and the initial shapes.



46

3.2.3 Summary

We are currently working to finish the these methods. The first thing we plan to do is to

build a system that embodies our whole framework by combining all our preliminary and

current methods together. In the next chapter, we propose several directions to further

improve our framework.
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(a) Subject 1, Image 1 (b) Subject 1, Image 2 (c) Subject 1, Image 3 (d) Subject 1, Image 4

(e) Subject 1, Image 5 (f) Subject 1, Image 6 (g) Subject 1, Image 7 (h) Subject 1, Image 8

(i) Subject 2, Image 1 (j) Subject 2, Image 2 (k) Subject 2, Image 3 (l) Subject 2, Image 4

(m) Subject 2, Image 5 (n) Subject 2, Image 6 (o) Subject 1, Image 7 (p) Subject 1, Image 8

Figure 3.8: Some sample results of liver detection for two test subjects. The true-positive

examples (green), false-positive examples (blue), true-negative examples (cyan) and false-

negative examples (red) are shown.
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(a) Subject 1, Image 1 (b) Subject 1, Image 2 (c) Subject 1, Image 3 (d) Subject 1, Image 4

(e) Subject 1, Image 5 (f) Subject 1, Image 6 (g) Subject 1, Image 7 (h) Subject 1, Image 8

(i) Subject 2, Image 1 (j) Subject 2, Image 2 (k) Subject 2, Image 3 (l) Subject 2, Image 4

(m) Subject 2, Image 5 (n) Subject 2, Image 6 (o) Subject 2, Image 7 (p) Subject 2, Image 8

Figure 3.9: Some sample results of left kidney detection for two test subjects. The true-

positive examples (green), false-positive examples (blue), true-negative examples (cyan) and

false-negative examples (red) are shown.
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(a) Subject 1, Image 1 (b) Subject 1, Image 2 (c) Subject 1, Image 3 (d) Subject 1, Image 4

(e) Subject 1, Image 5 (f) Subject 1, Image 6 (g) Subject 1, Image 7 (h) Subject 1, Image 8

(i) Subject 2, Image 1 (j) Subject 2, Image 2 (k) Subject 2, Image 3 (l) Subject 2, Image 4

(m) Subject 2, Image 5 (n) Subject 2, Image 6 (o) Subject 2, Image 7 (p) Subject 2, Image 8

Figure 3.10: Some sample results of right kidney detection for two test subjects. The true-

positive examples (green), false-positive examples (blue), true-negative examples (cyan) and

false-negative examples (red) are shown.
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(a) Subject 1, Image 1 (b) Subject 1, Image 2 (c) Subject 1, Image 3 (d) Subject 1, Image 4

(e) Subject 1, Image 5 (f) Subject 1, Image 6 (g) Subject 1, Image 7 (h) Subject 1, Image 8

(i) Subject 2, Image 1 (j) Subject 2, Image 2 (k) Subject 2, Image 3 (l) Subject 2, Image 4

(m) Subject 2, Image 5 (n) Subject 2, Image 6 (o) Subject 2, Image 7 (p) Subject 2, Image 8

Figure 3.11: Some sample results of spleen detection for two test subjects. The true-positive

examples (green), false-positive examples (blue), true-negative examples (cyan) and false-

negative examples (red) are shown.
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(a) Sample 1 (b) Sample 2

Figure 3.12: Shape comparison between the ground truth shape models (in blue) and the

initial shape model (in red) (i.e., the mean shape model).
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Chapter 4

PROPOSAL

In this proposal, we suggest several directions to improve our framework. First, we

propose to incorporate nonlinearity and robustness into the MDL-based algorithm in order

to get better 3D point correspondence algorithms. Second, for organ detection problems, we

propose to apply boosting and bagging to marginal space learning [124][125] and investigate

Rodrigues parameters or other better representations of rotation matrices for marginal

space learning. Third, to design better boundary refinements algorithms, we propose to

incorporate robust optimization and total unimodularity constraints as shape priors into

existing EM-like graph cut algorithms.

To the best of our knowledge, we have not seen the proposed directions in any previous

work. We will not only describe these ideas, but also provide our motivations in more detail

in the following sections.

4.1 Better 3D Point Correspondence Algorithm: Nonlinearity and Robustness

4.1.1 Nonlinear 3D Point Correspondence Algorithm: Minimum Description Length for

Tensor-based and Kernel-based 3D Point Correspondence

From our experimental results using 2DPCA (see Section 3.1.1), we can see that there still is

much room for improvement. Recently, different tensor-based decompositions [120][111][117]

have been proposed and have achieved better performances than PCA in many different

applications [120][111][117]. In addition, from a theoretical viewpoint, De Lathauwer, Bart

and Vandewalle [38] proved that a high-order tensor singular value decomposition generalizes

singular value decomposition for matrices. In other words, singular value decomposition for

matrices is a special case of high-order tensor singular value decomposition.

Similarly, there have been many recent algorithms that apply kernel tricks for different

linear algorithms and result in corresponding nonlinear algorithms. For example, kernel
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principal component analysis (KPCA) and kernel independent component analysis are two

representative examples of applying kernel tricks to principal component analysis and in-

dependent component analysis. The nonlinear algorithms perform better, because they are

more powerful than linear algorithms. Although there has been some previous research

[88][108] that use KPCA in active shape models to model shapes and achieve better perfor-

mances than PCA, there has been no previous work that applies kernel tricks to generalize

MDL-base objective functions to KPCA.

We want to generalize MDL-base objective functions [34] to tensor-based decompositions.

We propose to develop a MDL objective function for tensor-based decomposition and a

gradient descent approach to minimizes it. In addition, motivated by the success of the

kernel tricks for different algorithms, we plan to generalize the MDL-based objective function

[34] to KPCA by using kernel tricks. Our focuses are a generalized MDL-based objective

function [34] for kernel principal component analysis and a gradient descent approach to

minimize the generalized objective function.

4.1.2 Robust 3D Point Correspondence Algorithm

Noise or uncertainty in data is very common and may degrade the performance of a 3D

point correspondence algorithm that does not take it into consideration. Unfortunately,

the current MDL approach [34] is one such example, because it uses PCA to measure the

quality of the correspondence but PCA is not very robust to noise or outliers [54][37].

Robust statistics and their applications in computer vision are well reviewed in [79][101].

For example, the idea of M-estimators [54][79][101] has been applied to principal component

analysis [37], point registration [42] and template matching [27]. We are interested in

applying robust statistics to 3D point correspondence algorithms. For example, we want to

replace PCA with robust PCA [37] in the MDL-based approach [34] to make a robust 3D

point correspondence algorithm.

4.2 Boosting and Bagging Marginal Space Learning for Organ Detection

Marginal space learning [124][125] or incremental parameter learning [75] was reviewed in

detailed in Section 2.1.5.1. This recently proposed organ detection algorithm has been used
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extensively to detect livers [74], heart chambers [124][125], and Ileo-Cecal Valve [75] in CT

volumes. Recently, Zheng et al. [126] further improved MSL by using better representation

of a rotation matrix in which Euler angles are replaced with quaternions and constrained

spaces for object position, orientation and scale.

In contrast with previous work that uses MSL as a single classifier, we want to apply

boosting [46] and bagging [18] to MSL as a base classifier and combine multiple resultant

MSL classifiers together to further improve MSL’s accuracy. In fact, AdaBoosting [46],

which combines many weak classifiers to produce a powerful committee of classifier, serves

as a main building block in many state-of-the-art real-time detectors for different detection

problems such as face detection [115] and pedestrians detection [116]. In addition, one

disadvantage of representing a rotation matrix with a quaternion Zheng et al. used in [126]

is that it requires four parameters, not three (as for Euler angles). Rodrigues parameters

that requires three parameters can correct this problem. Hence, we aim to further improve

their approach [126] by replacing quaternions with Rodrigues parameters.

4.3 Robust Graph Cuts and Totally Unimodular Hard Constraints as Shape
Priors for Better Boundary Refinements

There are at least six assumptions/drawbacks of the basic boundary refinement procedure in

Section 2.1.5 that we can relax or remove. First, given a vertex point, Step 1 only searches for

the next position along its normal direction. We want to relax this limitation and consider

all possible directions. Second, at Step 1, the search for the new position for one vertex

point is independent of that of another vertex point. Instead, we would like to break the

independence assumption and assume that the movements of two neighboring vertex points

should be similar. In other words, we want to add smoothness terms [61][127] to regularize

the search for new positions. Third, we are not limited to using only intensity profiles at

one vertex. Instead, joint intensity and shape profiles from multiple vertices can be used.

Fourth, while Step 1 uses intensity information, Step 2 uses shape information, so these two

steps are independent of each other. We want to make these two steps correlated by using

both intensity and shape information in both steps. In addition, we would use discriminative

learning techniques to learn both intensity and shape features. Fifth, robustness is another
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weakness of the current approach that we want to overcome. Sixth, we want to allow more

different kinds of shape priors than only statistical shape models.

As mentioned in Section 3.1.3, the basic boundary refinement procedure in Section 2.1.5

can be easily solved by using iterative EM-like graph cut algorithms [45][119][4][100][77][128]

[122]. In fact, the first four improvements can be incorporated into EM-like graph cut algo-

rithms. If we can make EM-like graph cut algorithms more robust, we can incorporate the

fifth improvement into them. Similarly, if we can incorporate different kinds of shape priors

into EM-like graph cut algorithms while keeping the resultant algorithms computationally

efficient, we can achieve the sixth improvement. In the following, we will present our ideas

on how to incorporate the last two improvements into EM-like graph cut algorithms.

4.3.1 Robust Graph Cuts

Different approaches have been proposed to deal with uncertainty in network flow prob-

lems [13][14][2][47][3][12][71]. For example, Kouvelis and Yu [71] proposed two approaches,

minimax and minimax-regret. While the minimax approach seeks to minimize the worst

case performance under a set of scenarios for the data, the minimax-regret approach tries to

minimize the worst case loss in objective values. Unfortunately, under these two approaches,

the robust counterpart of many polynomially solvable combinatorial optimization problems

becomes NP-hard [71][2]. In contrast, Bertsimas and Sim [13] proposed a different mini-

max approach. Under their approach, the robust counterpart of a polynomially solvable

0-1 discrete optimization problem remains polynomially solvable. In addition, the robust

counterpart of an NP-hard α-approximation 0-1 discrete optimization problem1 remains an

α-approximation [114][81][93].

To make existing graph cut algorithms or EM-like graph cut algorithms more robust,

we propose to combine the minimax approach proposed by Bertsimas and Sim [13] with

them. There has been no previous work that uses this proposed idea in computer vision

applications. Thus, one of our contributions is to introduce this idea to the computer vision

1An NP-hard 0-1 discrete optimization problem is α-approximation if there is a polynomial time algorithm
that can find an approximation solution whose objective function value is at most α-times of the optimal
objective value.
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research community. In addition, we plan to further improve their minimax approach by

using the idea used for dynamic Markov random field [63] that reuses the flows in similar

capacitated graphs to speed the computation.

4.3.2 Totally Unimodular Hard Constraints

As shown in Section 3.1.3, hard constraints can be helpful for image segmentation. However,

(3.12) is 0-1 integer programming, which is generally NP-hard [81], so how to balance the

performance and efficiency is a key question. We are interested in special cases for (3.12)

whose global optimal solutions can be found in polynomial time. One such special case is

related to totally unimodularity (TU). A matrix is TU iff the determinant of each square

submatrix is equal to 0, 1 or -1 [81][93].

Consider the following standard integer program.

min cty (4.1)

s.t. Ay ≤ b

y ∈ Bn

Note that (3.12) can be easily represented as the above standard integer program, (4.1), by

replacing c, l,

A

W

, and

b

d

 in (3.12), with c, y, A and b in (4.1), respectively. Given

an integer program (e.g.,(3.12)), if its constraint matrix is TU and its right hand side is

integral (e.g,, b ∈ Zm), the following important proposition can be proved [81][93].

Proposition 4.3.1 If A is TU, then P (b) = {y ∈ Rn|Ay ≤ b, y ≥ 0} is integral for all

b ∈ Zm for which it is not empty.

If an integer program satisfies the conditions that its constraint matrix is TU and its right

hand side is integral, Proposition 4.3.1 states that we can replace integrality constraints (e.g.,

y ∈ Bn in (4.1)) with non-negativity constraints (y ≥ 0), which generates a linear program

and the optimal solutions to the linear program are integral if the optimal solutions exist.

In other words, an integer program whose constraint matrix is TU and whose right hand
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side is integral can be exactly2 solved by linear programming in polynomial time [55][93],

since all its basic feasible solutions are integral. If A in (4.1) is TU and b ∈ Zm in (4.1),

then the exact solutions if any to (4.1) are the same as the solutions to the following linear

program (4.2) that can be solved in polynomial time.

min cty (4.2)

s.t. Ay ≤ b

y ≥ 0

We want to incorporate the concept of TU into (3.12) in order to generate an effective and

efficient algorithm for organ segmentation. We focus on the following two directions. First,

we want to find interesting semantic constraints that can be represented as TU constraints

either by manual design or by learning from training images. Second, we will investigate

polynomial time algorithms [55][93] specialized for solving a linear program with a totally

unimodular constraint matrix.

2By exactly, we mean that both optimization problems have same optimal solutions and if we solve one
optimally, we get the optimal solutions to the other.
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Chapter 5

CONCLUSION

In this paper, we have presented our current approach for organ segmentation in CT

scans. We have discussed our work in 3D point correspondence, statistical shape models and

min s-t cuts with side constraints and have shown our initial results. These ideas together

can serve as building blocks for building a system for organ segmentation in CT scans. The

initial results identify and motivate several important research directions that merit further

research. We will continue to extend the current work by following the research directions

mentioned in our proposal.

• To design a better 3D point correspondence algorithm, we propose to incorporate

nonlinearity and robustness into existing the MDL-based 3D point correspondence

algorithm.

• To design a better organ detector, we propose to apply boosting and bagging to

MSL and investigate Rodrigues parameters or other better representations of rotation

matrices for MSL.

• To design better boundary refinements algorithm, we propose to incorporate robust

optimization and TU constraints as shape priors into existing EM-like graph cut al-

gorithms. This is a completely different algorithm.

We believe that the proposed research directions can lead to not only a better system

for organ segmentation in CT scans, but also to a better understanding of the organ seg-

mentation problem. Last, but not least, the methods we propose are general and can be

widely used in many other applications, such as such as 2D point correspondence, image

segmentation, stereo, image restoration, interactive image segmentation, face alignment and

clustering.
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