CSE590B Lecture 3 More about P¹

Resultants, Division, Syzygies and Transformations

> James F. Blinn JimBlinn.Com

http://courses.cs.washington.edu/courses/cse590b/13au/

Previously On CSE590b

Quadratic Polynomial

$$Q(x,w) = Ax^{2} + 2Bxw + Cw^{2} = P \rightarrow Q \leftarrow P$$

Equivalence Classes

And Now

Locus of Q's containing L as factor

Plane tangent to cone along line LL

Root vs Factor

Intersection of 2 loci

$$\rightarrow Q \leftarrow = \rightarrow K \ L \leftarrow + \rightarrow L \ K \leftarrow$$

Given Q, find K,L

 \rightarrow Draw tangents from Q to cone

Another Invariant Test

+ ->(L K Q

=

+

Grayed out indicates "identically zero"

Another Invariant Test

Do Two Quadratics share a root?

Is line from Q to R

tangent to cone?

det (S(α , β)) has a double root

Do Two Quadratics share a root?

Do Two Quadratics share a root?

"Resultant"

$$\rho(\mathbf{Q},\mathbf{R}) = \mathbf{Q}_{\mathbf{R}} \mathbf{Q}_{\mathbf{R}} \mathbf{Q}_{\mathbf{R}} - \mathbf{Q}_{\mathbf{R}} \mathbf{Q}_{\mathbf{R}} \mathbf{R} = 0$$

Resultant

$$\mathbf{Q} = \begin{bmatrix} A_Q & B_Q \\ B_Q & C_Q \end{bmatrix}, \mathbf{R} = \begin{bmatrix} A_R & B_R \\ B_R & C_R \end{bmatrix}$$
$$\rho(\mathbf{Q}, \mathbf{R}) = \det \begin{bmatrix} A_Q & \frac{1}{2}B_Q & C_Q & 0 \\ 0 & A_Q & \frac{1}{2}B_Q & C_Q \\ A_R & \frac{1}{2}B_R & C_R & 0 \\ 0 & A_R & \frac{1}{2}B_R & C_R \end{bmatrix}$$

Sylvester Matrix

Resultant and root interleaving

B/E Q_2 R_1 Q_1 R_2 R_2 R_2 R_2 R_2 R_2

$$\rho(Q,R) < 0$$

Roots interleaved

Two possible mappings 3D->2D

F

Preserves lines
Maps + and - cones together

+ and – cones distinct
Lines not preserved

Resultant

=-

$$\mathbf{Q} = \begin{bmatrix} A_Q & B_Q \\ B_Q & C_Q \end{bmatrix}, \mathbf{R} = \begin{bmatrix} A_R & B_R \\ B_R & C_R \end{bmatrix}$$
$$= -A_Q C_R + 2B_Q B_R - C_Q A_R$$
$$= \begin{bmatrix} A_Q & B_Q & C_Q \end{bmatrix} \begin{bmatrix} -C_R \\ 2B_R \\ -A_R \end{bmatrix}$$

$$\mathbf{Q} = \begin{bmatrix} A_{Q} & B_{Q} \\ B_{Q} & C_{Q} \end{bmatrix}, \mathbf{R} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$(\mathbf{Q}) = -(A_{Q} + C_{Q}) = -2E_{Q} = -2trace(\mathbf{Q})$$

Categorizing Equivalence Classes

$$\begin{array}{c} \searrow \bigcirc \longleftarrow \\ B \end{array} = \begin{bmatrix} A & B \\ B & C \end{bmatrix}$$

$$= -2(AC - B^{2}) = -2 \det(\mathbf{Q})$$

$$= -(A + C) = -2E = -2 \operatorname{trace}(\mathbf{Q})$$
But could use any quadratic

in positive cone

Categorizing Equivalence Classes

What does this mean?

We already know the meaning of:

K is a factor of Q (Q is type 11)

An Identity

Visio Demo

An Identity

An Identity

True for all Q, K, L

Each term has same number of Q, K, L Just connected differently

Called a "Syzygy"

Rearrange Syzygy

(K) (K) = +

Interpret Syzygy

(K) K += →L K + →K L ←

Interpret Syzygy

Interpret Syzygy

 $\rightarrow @ \leftarrow$, $\rightarrow K \leftarrow$, $\rightarrow L \leftarrow$ Are linearly dependent

Two ways to look at Q

$$\overrightarrow{\mathbf{Q}} \leftarrow = \begin{bmatrix} A & B \\ B & C \end{bmatrix}$$

$$\bigcirc \bigcirc \rightarrow = \begin{bmatrix} A & B & C \end{bmatrix}$$

Two ways to look at Q

$$\overrightarrow{\mathbf{Q}} \leftarrow = \begin{bmatrix} A & B \\ B & C \end{bmatrix}$$

$$\bigcirc \bigcirc = \begin{bmatrix} A & B & C \end{bmatrix}$$

Linearly dependent

$$\alpha \longrightarrow \mathbb{Q} \longleftarrow +\beta \longrightarrow \mathbb{R} \longleftarrow +\gamma \longrightarrow \mathbb{S} \longleftarrow = 0 \qquad \qquad \alpha \ \mathbb{Q} \longrightarrow +\beta \ \mathbb{R} \longrightarrow +\gamma \ \mathbb{S} \longrightarrow = 0$$

If

$$= trace(\varepsilon \mathbf{Q}\varepsilon \mathbf{R}\varepsilon \mathbf{S}) \qquad \mathbf{Q} = \begin{bmatrix} A_Q & B_Q \\ B_Q & C_Q \end{bmatrix}, \mathbf{R} = \begin{bmatrix} A_R & B_R \\ B_R & C_R \end{bmatrix}, \mathbf{S} = \begin{bmatrix} A_S & B_S \\ B_S & C_S \end{bmatrix}$$

(R)

(R)

S

$$= trace \left\{ \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} A_Q & B_Q \\ B_Q & C_Q \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} A_R & B_R \\ B_R & C_R \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} A_S & B_S \\ B_S & C_S \end{bmatrix} \right\}$$

$$= -A_Q B_R C_R - B_Q C_R A_S - C_Q A_R B_S + A_Q C_R B_S + B_Q A_R C_R + C_Q B_R A_S$$
$$= -\det \begin{bmatrix} A_Q & B_Q & C_Q \\ A_R & B_R & C_R \\ A_S & B_S & C_R \end{bmatrix}$$

S

Linear Dependence of Q,KK,LL

The reverse direction

If
$$\alpha \rightarrow Q \leftarrow +\beta \rightarrow R \leftarrow +\gamma \rightarrow S \leftarrow = 0$$

Then

What are the scale factors?

$$0 \rightarrow = \alpha \quad Q \rightarrow +\beta \quad R \rightarrow +\gamma \quad S \rightarrow$$

$$\rightarrow 0 \leftarrow = \alpha \quad Q \leftarrow +\beta \quad R \leftarrow +\gamma \quad S \leftarrow$$

Use the Cramer's Rule identity

Roots of Q

$$\begin{bmatrix} x & w \end{bmatrix} = \begin{bmatrix} C & -B \pm \sqrt{B^2 - AC} \end{bmatrix}$$

$$\begin{bmatrix} -B + \sqrt{B^2 - AC} & A \end{bmatrix} \swarrow \begin{bmatrix} C & -B - \sqrt{B^2 - AC} \end{bmatrix} = 0$$

Note: different signs

Roots of Q

$$\begin{bmatrix} x & w \end{bmatrix} = \begin{bmatrix} -B \pm \sqrt{B^2 - AC} & A \end{bmatrix}$$
$$\begin{bmatrix} x & w \end{bmatrix} = \begin{bmatrix} -C & B \pm \sqrt{B^2 - AC} \end{bmatrix}$$

$$\begin{bmatrix} x & w \end{bmatrix} = \alpha \begin{bmatrix} -B \pm \sqrt{B^2 - AC} & A \end{bmatrix} + \beta \begin{bmatrix} -C & B \pm \sqrt{B^2 - AC} \end{bmatrix}$$

$$\begin{bmatrix} x & w \end{bmatrix} = \begin{bmatrix} \alpha & \beta \end{bmatrix} \left\{ \begin{bmatrix} -B & A \\ -C & B \end{bmatrix} \pm \sqrt{B^2 - AC} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

$$(x,w) \rightarrow = (\alpha,\beta) \rightarrow (Q) \qquad \pm \sqrt{\frac{1}{2}} \qquad (Q) \qquad (\alpha,\beta) \rightarrow (Q) \qquad (Q) \qquad (\alpha,\beta) \rightarrow (Q) \qquad (Q) \qquad$$

If
$$L = 0$$

Then L is a factor of Q so $\rightarrow Q \leftarrow = \rightarrow L (K \leftarrow + \rightarrow L (K \leftarrow -$

What is K?

Answer:

$$(K) \leftarrow = (L) \land Q \land R \leftarrow - (L) \land R \land Q \leftarrow -$$

Why does this work? Where does R come from?

Another Syzygy

Syzygy continued

True for all Q,R,L

Swap Q,R

Subtract and rearrange

Syzygy continued

$$\frac{\mathbb{L} \times \mathbb{R}}{\mathbb{Q}} = 1/2 \left\{ \xrightarrow{-1}{\mathbb{Q}} \times \mathbb{K} \leftarrow + \xrightarrow{-1}{\mathbb{K}} \times \mathbb{Q} \leftarrow \right\} + \frac{\mathbb{L} \times \mathbb{Q}}{\mathbb{Q}} \times \mathbb{Q}$$

True for all Q,R,L

If
$$L = 0$$

$$= 1/2 \left\{ \xrightarrow{} \mathbb{K} \times \mathbb{K}$$

As long as R doesn't have L as a factor, so this is nonzero

Transformations

$$\mathbf{M} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

$$\begin{bmatrix} x & w \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} \tilde{x} & \tilde{w} \end{bmatrix}$$
$$\tilde{x} \quad Ax + Cw$$

 $\tilde{w}^{-}Bx+Dw$

Special Matrices

Nilpotent

$$\rightarrow N \rightarrow N \rightarrow = \rightarrow 0 \rightarrow$$

Idempotent

$$\rightarrow D \rightarrow D \rightarrow = \kappa \rightarrow D \rightarrow$$

Involution

$$\rightarrow V \rightarrow V \rightarrow = \kappa \rightarrow I \rightarrow$$

The Function

$$w = 0 \implies \frac{\tilde{x}}{\tilde{w}} = \frac{A}{B}$$
$$\tilde{w} = 0 \implies Bx + Dw = 0 \implies \frac{x}{w} = \frac{-D}{B}$$

Examples of function

$$T\left(\frac{x}{w}\right) = \frac{A\frac{x}{w} + C}{B\frac{x}{w} + D}$$
$$T'\left(\frac{x}{w}\right) = \left(\frac{A\frac{x}{w} + C}{B\frac{x}{w} + D}\right)' = \frac{AD - BC}{\left(B\frac{x}{w} + D\right)^2}$$

A = -D trace=0

Three Invariants

Determinant $\Delta = AD - BC$

trace t = A + D

Characteristic equation

$$det \begin{bmatrix} A - \lambda & B \\ C & D - \lambda \end{bmatrix} = \lambda^2 + (-A - D)\lambda + (AD - BC) = 0$$
$$\delta = (-A - D)^2 - 4(AD - BC)$$
$$= (A - D)^2 + 4BC$$

Three Invariants

Determinant $\Delta = AD - BC$

trace t = A + D

Characteristic equation discriminant

$$\delta = A^2 - 2AD + D^2 + 4BC$$

Relation between them:

$$4\Delta + \delta = t^2$$

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} AA+BC & AB+BD \\ AC+DC & BC+DD \end{bmatrix} = \begin{bmatrix} AA+BC & AB+BD \\ AC+DC & BC+DD \end{bmatrix} = \begin{bmatrix} AA+BC & AB+BD \\ AC+DC & BC+DD \end{bmatrix} + \begin{bmatrix} BC-AD & 0 \\ 0 & BC-AD \end{bmatrix}$$

Identity 3

Reducing complex diagrams

Tools:

To reduce this:

To simple combinations of:

Plotting Invariants in ABCD Space

$$\Delta = AD - BC$$

$$t = A + D$$

$$\delta = A^{2} - 2AD + D^{2} + 4BC$$

$$\Delta = 0 \implies \frac{B}{C} = \frac{A}{C} \frac{D}{C}$$
$$t = 0 \implies \frac{A}{C} + \frac{D}{C} = 0$$
$$\delta = 0 \implies \frac{B}{C} = -\frac{1}{4} \left(\frac{A}{C} - \frac{D}{C}\right)^2$$

New Coordinate System

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} E+F & G+H \\ G-H & E-F \end{bmatrix}$$

$$\Delta = AD - BC$$

= $(E + F)(E - F) - (G + H)(G - H)$
= $(E^2 + H^2) - (F^2 + G^2)$

t = A + D = 2E

$$\delta = (-A - D)^2 - 4(AD - BC)$$
$$= 4(F^2 + G^2 - H^2)$$

$$\Delta = E^2 + H^2 - F^2 - G^2$$

$$\frac{1}{4}t^2 = E^2$$

$$\frac{1}{4}\delta = -H^2 + F^2 + G^2$$

Plot in EFGH space

$$\Delta = 0 \quad \left(\frac{H}{E}\right)^2 = \left(\frac{F}{E}\right)^2 + \left(\frac{G}{E}\right)^2 - 1$$

$$\delta = 0 \quad \left(\frac{H}{E}\right)^2 = \left(\frac{F}{E}\right)^2 + \left(\frac{G}{E}\right)^2$$

t = 0 plane at infinity

Compare with Q version

Plot in EFGH space

$$\Delta = 0 \qquad \left(\frac{H}{E}\right)^2 = \left(\frac{F}{E}\right)^2 + \left(\frac{G}{E}\right)^2 - 1$$

t = 0 plane at infinity

$$\delta = 0 \qquad \left(\frac{F}{E}\right)^2 + \left(\frac{G}{E}\right)^2 = \left(\frac{H}{E}\right)^2$$

$$\Delta = 0 \qquad \left(\frac{E}{H}\right)^2 = \left(\frac{F}{H}\right)^2 + \left(\frac{G}{H}\right)^2 - 1$$
$$t = 0 \qquad \left(\frac{E}{H}\right) = 0$$
$$\delta = 0 \qquad \left(\frac{F}{H}\right)^2 + \left(\frac{G}{H}\right)^2 = 1$$

More generally, rotate along E,H axis

$$\begin{bmatrix} E \\ H \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \hat{E} \\ \hat{H} \end{bmatrix}$$

Cross section

Roadmap of M

