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Intersection of 2 loci 
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Another Invariant Test 
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Another Invariant Test 
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Do Two Quadratics share a root? 
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Do Two Quadratics share a root? 
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Do Two Quadratics share a root? 
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Resultant and root 
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Two possible mappings 3D->2D 

E

F
B

 LL

 

KK

F/E

B/E

LL

KK

KL        

E

F

 Preserves lines 

 Maps + and – cones together  

 

 + and – cones distinct 

 Lines not preserved 

 



Resultant 

R

R

4rQ,R =
Q

R

Q

R

 4

Q

Q

2 detQ 2 detR
functional determinant



Functional Determinant 
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Functional Determinant 
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Functional Determinant 
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Categorizing Equivalence Classes 

A B

B C

 
=  

 
Q

Q

I

   2 2 traceA C E=   =  =  Q

Q

Q
   22 2detAC B=   =  Q

But could use any quadratic 

in positive cone 



Categorizing Equivalence Classes 
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What does this mean? 

= 0LK Q

LL Q = 0

K is a factor of Q (Q is type 11) 

L is a factor of Q (Q is type 11) 
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We already know the meaning of: 



An Identity 

LL KK
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An Identity 
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An Identity 
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Called a “Syzygy” 

True for all  Q, K, L 

Each term has same number of   Q, K, L 

Just connected differently 
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Interpret Syzygy 
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Two ways to look at Q 
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The reverse direction 
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What are the scale factors? 
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Roots of Q 
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Division 
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Another Syzygy 
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Syzygy continued 
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True for all Q,R,L 
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Special Matrices 
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Three Invariants 
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Three Invariants 
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Plotting Invariants in ABCD Space 
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Plot in EFGH space 
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More generally, rotate along E,H axis 
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Roadmap of M 
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