CSE590B Lecture 3 More about P^{1}

Resultants, Division, Syzygies and Transformations

James F. Blinn
JimBlinn. Com

http://courses.cs.washington.edu/courses/cse590b/13au/

Previously On CSE590b

Quadratic Polynomial

Topics

Equivalence Classes

Invariant Diagrams

Internal Structure

Plug in

$$
\begin{aligned}
& \text { Q Q ? } \\
& \rightarrow \text { (a) } \leftarrow=\rightarrow \text { (K) (K) } \leftarrow+\rightarrow \text { (L) (L) } \leftarrow \\
& \rightarrow \text { (Q) } \leftarrow=\rightarrow \text { (K) (K) } \leftarrow \rightarrow \text { (L) (L) } \leftarrow \\
& =\rightarrow(M)(\mathbb{N}) \leftarrow+\rightarrow(\mathbb{N})(M) \leftarrow
\end{aligned}
$$

And Now

Locus of Q's containing L as factor

$$
\begin{aligned}
Q & =K L \\
& =\left(K_{1} x+K_{2} w\right)\left(L_{1} x+L_{2} w\right) \\
& =K_{1} L_{1} x^{2}+\left(K_{1} L_{2}+K_{2} L_{1}\right) x w+K_{2} L_{2} w^{2}
\end{aligned}
$$

Plane tangent to cone along line LL

Root vs Factor

Root

$$
P \rightarrow Q \leftarrow P=0
$$

Factor

$$
\begin{aligned}
& (K)^{2} Q _(K)=0 \\
& \rightarrow(Q) \leftarrow=\rightarrow(K)(L) \leftarrow+\rightarrow(L)(K) \leftarrow
\end{aligned}
$$

Relation
between
$(K)^{-}=P \rightarrow$

Intersection of 2 loci

$$
\rightarrow(Q) \leftarrow=\rightarrow(\mathbb{K})(L) \leftarrow+\rightarrow(L)(\mathbb{K}) \leftarrow
$$

Given Q, find K,L
\rightarrow Draw tangents from Q to cone

Another Invariant Test

$$
\rightarrow \text { Q } \leftarrow=\rightarrow \mathrm{K} \text { (L) } \leftarrow+\mathrm{K} \leftarrow
$$

$$
\underbrace{Q}\left(\begin{array}{l}
K(L) \\
(K)
\end{array}\right.
$$

Grayed out indicates "identically zero"

Another Invariant Test

$$
\rightarrow(\text { Q } \leftarrow=\rightarrow \text { (K) (L) } \leftarrow+\rightarrow(L) ~(\mathbb{K}) \leftarrow
$$

$$
\text { (a) }=1 \times(\mathbb{C}
$$

Do Two Quadratics share a root?

Is line from Q to R tangent to cone?
$\rightarrow(S) \leftarrow=\alpha \rightarrow(Q) \leftarrow+\beta \rightarrow(B) \leftarrow$ $\operatorname{det}(\mathrm{S}(\alpha, \beta))$ has a double root

$$
\begin{aligned}
& \text { (S) }=a_{\alpha}^{\alpha(Q)}+{ }_{\beta}^{\alpha} a^{(B)}
\end{aligned}
$$

Do Two Quadratics share a root?

$$
\text { (S) }=\alpha^{\alpha}(a)
$$

Do Two Quadratics share a root?

Is line from Q to $\mathrm{R} \rightarrow(\mathrm{S}) \leftarrow=\alpha \rightarrow(\mathrm{Q}) \leftarrow+\beta \rightarrow(\mathrm{B}) \leftarrow$ tangent to cone?
$\operatorname{det} \mathrm{S}(\alpha, \beta)$ has a double root
"Resultant"

$$
\rho(Q, R)=
$$

Resultant

$$
\begin{aligned}
& \mathbf{Q}=\left[\begin{array}{ll}
A_{Q} & B_{Q} \\
B_{Q} & C_{Q}
\end{array}\right], \mathbf{R}=\left[\begin{array}{ll}
A_{R} & B_{R} \\
B_{R} & C_{R}
\end{array}\right] \\
& \rho(\mathbf{Q}, \mathbf{R})=\operatorname{det} \underbrace{\left[\begin{array}{cccc}
A_{Q} & \frac{1}{2} B_{Q} & C_{Q} & 0 \\
0 & A_{Q} & \frac{1}{2} B_{Q} & C_{Q} \\
A_{R} & \frac{1}{2} B_{R} & C_{R} & 0 \\
0 & A_{R} & \frac{1}{2} B_{R} & C_{R}
\end{array}\right]}_{\text {Sylvester Matrix }}
\end{aligned}
$$

Resultant and root interleaving

$$
\rho(Q, R)>0
$$

Roots disjoint

$\rho(Q, R)<0$
Roots interleaved

Two possible mappings 3D->2D

() Preserves lines
© Maps + and - cones together

() + and - cones distinct
© Lines not preserved

Resultant

Functional Determinant

$$
\begin{aligned}
& \text { (R) } \\
& \rightarrow \text { (Q) } \leftarrow=\rightarrow \text { (K) } K<+\rightarrow \text { (L) (L) } \leftarrow \\
& \rightarrow(B) \leftarrow=\rightarrow(M) \leftarrow+\rightarrow \text { (N) }(\mathbb{M} \leftarrow \\
& \text { (B) } \\
& +\sqrt[(L)]{(L)(L)}
\end{aligned}
$$

Functional Determinant

$$
\begin{aligned}
& \text { (B) }=\sqrt[A B]{(A)} \\
& +\begin{array}{l}
\text { (L) (L) } \\
\text { (M) (M) } \\
\text { (N) (N) }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (IL) (L) (L) (1) }
\end{aligned}
$$

Functional Determinant

$$
\begin{aligned}
& \text { (B) } \\
& \left(\frac{D}{(L)} \sqrt{(L)}\right. \\
& \text { (S) (T) (U) (U) } \\
& \text { (L) (L) (D) (U) (U) }
\end{aligned}
$$

Functional Determinant

$$
\begin{gathered}
\mathbf{Q}=\left[\begin{array}{ll}
A_{Q} & B_{Q} \\
B_{Q} & C_{Q}
\end{array}\right], \mathbf{R}=\left[\begin{array}{ll}
A_{R} & B_{R} \\
B_{R} & C_{R}
\end{array}\right] \\
\mathbf{Q}=-A_{Q} C_{R}+2 B_{Q} B_{R}-C_{Q} A_{R} \\
=\left[\begin{array}{lll}
A_{Q} & B_{Q} & C_{Q}
\end{array}\right]\left[\begin{array}{l}
-C_{R} \\
2 B_{R} \\
-A_{R}
\end{array}\right]
\end{gathered}
$$

$$
\mathbf{Q}=\left[\begin{array}{ll}
A_{Q} & B_{Q} \\
B_{Q} & C_{Q}
\end{array}\right], \mathbf{R}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

(I)

Categorizing Equivalence Classes

$$
\rightarrow Q \leftarrow=\left[\begin{array}{ll}
A & B \\
B & C
\end{array}\right]
$$

But could use any quadratic in positive cone

Categorizing Equivalence Classes

What does this mean?

$$
(\mathbb{k})^{-\pi} \text { (Q) } x^{2}(b)=0
$$

We already know the meaning of:

$$
\begin{array}{ll}
\left.(K)^{2} Q+\mathbb{C}\right)=0 & K \text { is a factor of } Q(Q \text { is type 11) } \\
(L)^{\pi} \times(Q)=0 & L \text { is a factor of } Q(Q \text { is type 11) }
\end{array}
$$

An Identity

(1) $)^{*}(\mathbb{R})(1)^{\pi} \sqrt{(k)}$
 $$
\rightarrow \text { @ } \leftarrow
$$

Visio Demo

An Identity

\rightarrow (Q) \leftarrow

An Identity

True for all $\mathrm{Q}, \mathrm{K}, \mathrm{L}$
Each term has same number of Q, K, L Just connected differently

Called a "Syzygy"

Rearrange Syzygy

Interpret Syzygy

$$
\begin{aligned}
& \rightarrow(a) \leftarrow \quad=\left(\mathbb{K} \mathbb{K}^{(1)}{ }^{+} \rightarrow(\mathbb{C})(\mathbb{L} \leftarrow \leftarrow\right.
\end{aligned}
$$

Interpret Syzygy

$$
-\left({ }^{\wedge}\right)^{\pi} Q_{2}(\llcorner)\{\rightarrow(L) \mathbb{K}) \leftarrow+\rightarrow(\mathbb{K}(L) \leftarrow\}
$$

Interpret Syzygy

$\rightarrow(Q) \leftarrow, \rightarrow \mathbb{K} \leftarrow<, \rightarrow(L)(L) \leftarrow \quad$ Are linearly dependent

Two ways to look at Q

$$
\rightarrow @<=\left[\begin{array}{ll}
A & B \\
B & C
\end{array}\right]
$$

$$
\text { (Q) } \rightarrow=\left[\begin{array}{lll}
A & B & C
\end{array}\right]
$$

Two ways to look at Q

$$
\rightarrow(Q) \leftarrow=\left[\begin{array}{ll}
A & B \\
B & C
\end{array}\right]
$$

$$
Q \rightarrow=\left[\begin{array}{lll}
A & B & C
\end{array}\right]
$$

Linearly dependent

$$
\alpha \rightarrow(\mathrm{Q} \leftarrow+\beta \rightarrow \mathrm{B} \leftarrow+\gamma \rightarrow(\mathrm{S}) \leftarrow=0 \quad \alpha(Q \rightarrow+\beta(\mathbb{R} \rightarrow+\gamma(\mathrm{S}) \rightarrow=0
$$

If

(S)
$\mathbf{Q}=\left[\begin{array}{cc}A_{Q} & B_{Q} \\ B_{Q} & C_{Q}\end{array}\right], \mathbf{R}=\left[\begin{array}{ll}A_{R} & B_{R} \\ B_{R} & C_{R}\end{array}\right], \mathbf{S}=\left[\begin{array}{ll}A_{S} & B_{S} \\ B_{S} & C_{S}\end{array}\right]$

$$
\begin{aligned}
& =\operatorname{trace}\left\{\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{cc}
A_{Q} & B_{Q} \\
B_{Q} & C_{Q}
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{cc}
A_{R} & B_{R} \\
B_{R} & C_{R}
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{cc}
A_{S} & B_{S} \\
B_{S} & C_{S}
\end{array}\right]\right\} \\
& =-A_{Q} B_{R} C_{R}-B_{Q} C_{R} A_{S}-C_{Q} A_{R} B_{S}+A_{Q} C_{R} B_{S}+B_{Q} A_{R} C_{R}+C_{Q} B_{R} A_{S}
\end{aligned}
$$

$$
=-\operatorname{det}\left[\begin{array}{ccc}
A_{Q} & B_{Q} & C_{Q} \\
A_{R} & B_{R} & C_{R} \\
A_{S} & B_{S} & C_{R}
\end{array}\right]
$$

Linear Dependence of Q,KK,LL

$$
\begin{aligned}
& \rightarrow(\mathbb{R} \leftarrow=\rightarrow(\mathbb{C})(\mathbb{C}) \leftarrow \\
& \rightarrow(S) \leftarrow=\rightarrow(\mathbb{L})(\mathbb{C}) \leftarrow
\end{aligned}
$$

The reverse direction

If

$$
\begin{aligned}
& \alpha \rightarrow \mathrm{Q} \leftarrow+\beta \rightarrow \mathrm{B} \leftarrow+\gamma \rightarrow \mathrm{S} \leftarrow=0 \\
& \rightarrow \mathrm{~S} \leftarrow \leftarrow=-\alpha / \gamma \rightarrow \mathrm{Q} \leftarrow-\beta / \gamma \rightarrow \mathrm{B} \leftarrow \leftarrow
\end{aligned}
$$

Then

What are the scale factors?

$$
\begin{gathered}
(0 \rightarrow=\alpha \quad \text { Q } \rightarrow+\beta \quad \mathrm{R} \rightarrow+\gamma \quad \mathrm{S} \rightarrow \\
\rightarrow(0 \leftarrow=\alpha \rightarrow \mathrm{Q} \leftarrow+\beta \rightarrow \mathrm{R} \leftarrow+\gamma \rightarrow \mathrm{S} \leftarrow
\end{gathered}
$$

Use the Cramer's Rule identity

Roots of Q

$$
\begin{array}{cl}
Q(x, w)=A x^{2}+2 B x w+C w^{2}=\mathrm{P} \rightarrow \mathrm{Q} & \mathrm{P} \\
\frac{x}{w}=\frac{-2 B \pm \sqrt{(2 B)^{2}-4 A C}}{2 A} & {\left[\begin{array}{ll}
x & w
\end{array}\right]=\left[\begin{array}{ll}
-B \pm \sqrt{B^{2}-A C} & A
\end{array}\right]} \\
\frac{w}{x}=\frac{-2 B \pm \sqrt{(2 B)^{2}-4 C A}}{2 C} & {\left[\begin{array}{ll}
x & w
\end{array}\right]=\left[\begin{array}{ll}
C & -B \pm \sqrt{B^{2}-A C}
\end{array}\right]}
\end{array}
$$

$$
\underbrace{-B+\sqrt{B^{2}-A C}}_{\text {Note: different signs }} \quad A]<\left[\begin{array}{ll}
C & -B-\sqrt{B^{2}-A C}
\end{array}\right]=0
$$

Roots of Q

$$
Q(x, w)=A x^{2}+2 B x w+C w^{2}=\mathrm{P} \rightarrow \mathrm{Q}<\mathrm{P}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
x & w
\end{array}\right]=\left[\begin{array}{ll}
-B \pm \sqrt{B^{2}-A C} & A
\end{array}\right]} \\
& {\left[\begin{array}{ll}
x & w
\end{array}\right]=\left[\begin{array}{ll}
-C & B \pm \sqrt{B^{2}-A C}
\end{array}\right]}
\end{aligned}
$$

$$
\left[\begin{array}{ll}
x & w
\end{array}\right]=\alpha\left[\begin{array}{ll}
-B \pm \sqrt{B^{2}-A C} & A
\end{array}\right]+\beta\left[\begin{array}{ll}
-C & B \pm \sqrt{B^{2}-A C}
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
x & w
\end{array}\right]=\left[\begin{array}{ll}
\alpha & \beta
\end{array}\right]\left\{\left[\begin{array}{ll}
-B & A \\
-C & B
\end{array}\right] \pm \sqrt{B^{2}-A C}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

$$
(x, w) \rightarrow=\Omega, \beta \rightarrow Q< \pm \pm \sqrt{\frac{1}{2} Q_{R_{2}} Q^{\pi}, Q} \quad \Omega, \beta \rightarrow
$$

Division

$$
\text { If (L) } x^{2} \text { (a) }(b)=0
$$

Then L is a factor of Q so

$$
\rightarrow(\mathrm{Q}) \leftarrow=\rightarrow(\mathrm{L}) \mathbb{K}) \leftarrow+\rightarrow(\mathrm{L}) \mathbb{K}) \leftarrow
$$

What is K ?
Answer:

$$
\left(\mathbb{K} \leftarrow=()^{-}\right)(Q)^{\pi} \sqrt{B} \leftarrow-(L)^{-3}(B) \leftarrow
$$

Why does this work?
Where does R come from?

Another Syzygy

$$
+\int_{(a)}^{(B)}+\left(\frac{(D)}{(a)}\right.
$$

$$
\begin{aligned}
& \text { (ㄴ) }{ }^{2} \text { (a) } \times(1) \\
& \longrightarrow \text { ® }
\end{aligned}
$$

Syzygy continued

True for all $\mathrm{Q}, \mathrm{R}, \mathrm{L}$

Swap Q,R

Subtract and rearrange

Syzygy continued

True for all Q,R,L

Division

$$
\text { If } \left.\quad(L)^{-3}\right)^{2} \times(L)=0
$$

$$
\left(K \leftarrow=(L)^{2}(Q)^{-} \sqrt{B} \leftarrow-()^{2}\right)^{2}(Q) \leftarrow
$$

Division

$$
\text { If } \quad(L)^{-\pi} @+\times(L)=0
$$

As long as R doesn't have L as a factor, so this is nonzero

Transformations

$$
\begin{gathered}
\mathbf{M}=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] \\
\rightarrow(\mathbb{M}) \rightarrow \\
{\left[\begin{array}{ll}
x & w
\end{array}\right]\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{ll}
\tilde{x} & \tilde{w}
\end{array}\right]} \\
\frac{\tilde{x}}{\tilde{w}}=\frac{A x+C w}{B x+D w}
\end{gathered}
$$

Special Matrices

Nilpotent

Idempotent

$$
\rightarrow \text { D } \rightarrow \text { D } \rightarrow=\kappa \rightarrow D \rightarrow
$$

Involution

$$
\rightarrow \mathrm{V} \rightarrow \mathrm{~V} \rightarrow=\kappa \rightarrow \mathrm{I} \rightarrow
$$

The Function

$$
\frac{\tilde{x}}{\tilde{w}}=\frac{A x+C w}{B x+D w}
$$

$$
\begin{aligned}
& w=0 \Rightarrow \frac{\tilde{x}}{\tilde{w}}=\frac{A}{B} \\
& \tilde{w}=0 \Rightarrow B x+D w=0 \Rightarrow \frac{x}{w}=\frac{-D}{B}
\end{aligned}
$$

Examples of function

$$
\begin{aligned}
& T\left(\frac{x}{w}\right)=\frac{A \frac{x}{w}+C}{B \frac{x}{w}+D} \\
& T^{\prime}\left(\frac{x}{w}\right)=\left(\frac{A \frac{x}{w}+C}{B \frac{x}{w}+D}\right)^{\prime}=\frac{A D-B C}{\left(B \frac{x}{w}+D\right)^{2}}
\end{aligned}
$$

$A=-D$ trace $=0$

Three Invariants $\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$

Determinant
trace

$$
t=A+D
$$

Characteristic equation

$$
\begin{aligned}
& \operatorname{det}\left[\begin{array}{cc}
A-\lambda & B \\
C & D-\lambda
\end{array}\right]=\lambda^{2}+(-A-D) \lambda+(A D-B C)=0 \\
& \delta=(-A-D)^{2}-4(A D-B C) \\
& =(A-D)^{2}+4 B C
\end{aligned}
$$

Three Invariants
 $$
\left[\begin{array}{ll} A & B \\ C & D \end{array}\right]
$$

Determinant $\quad \Delta=A D-B C$
trace

$$
t=A+D
$$

Characteristic equation discriminant

$$
\delta=A^{2}-2 A D+D^{2}+4 B C
$$

Relation between them:

$$
4 \Delta+\delta=t^{2}
$$

Diagrams

Identity 1

$$
\begin{aligned}
& {\left[\begin{array}{cc}
D \\
-C & -B
\end{array}\right]} \\
& \\
& \text { adj } \mathbf{M}=(\operatorname{trace} \mathbf{M}) \mathbf{I}-\mathbf{M} \\
& =\left[\begin{array}{cc}
D & -B \\
-C & A
\end{array}\right]
\end{aligned}
$$

Identity 2

Identity 2

Identity 2

Identity 3

Reducing complex diagrams

Tools:

$$
(\underset{\sim}{M}=(\underset{\sim}{M}) \downarrow-\stackrel{\downarrow}{\downarrow}
$$

$$
\stackrel{M}{M}=(\underset{M}{M} \underset{M}{M}
$$

To reduce this:

To simple combinations of:

Discriminant of

Characteristic Equation

$$
\delta=t^{2}-4 \Delta
$$

$$
=\overparen{M}
$$

$$
(\mathbb{M})(\mathbb{M})=\mathbb{M}
$$

$$
\delta=M(M)
$$

The "Phase Space" of M

$$
\delta=(M)
$$

A valid matrix
Numeric "signature"

$$
\frac{\delta}{t^{2}}=\chi
$$

$\tan ^{-1}\left(\delta, t^{2}\right)=\phi$

Plotting Invariants in ABCD Space

$$
\begin{aligned}
& \Delta=A D-B C \\
& t=A+D \\
& \delta=A^{2}-2 A D+D^{2}+4 B C
\end{aligned}
$$

$$
\Delta=0 \Rightarrow \frac{B}{C}=\frac{A}{C} \frac{D}{C}
$$

$$
t=0 \quad \Rightarrow \quad \frac{A}{C}+\frac{D}{C}=0
$$

$$
\delta=0 \Rightarrow \frac{B}{C}=-\frac{1}{4}\left(\frac{A}{C}-\frac{D}{C}\right)^{2}
$$

New Coordinate System

$$
\begin{array}{ll}
& \\
& {\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{cc}
E+F & G+H \\
G-H & E-F
\end{array}\right]} \\
\begin{aligned}
& \Delta=A D-B C \\
&=(E+F)(E-F)-(G+H)(G-H) \\
&=\left(E^{2}+H^{2}\right)-\left(F^{2}+G^{2}\right) \\
& t=A+D=2 E \\
& \delta=(-A-D)^{2}-4(A D-B C) \\
&=4\left(F^{2}+G^{2}-H^{2}\right) \\
& \Delta=E^{2}+H^{2}-F^{2}-G^{2} \\
& \frac{1}{4} t^{2}=E^{2} \\
& \frac{1}{4} \delta=-H^{2}+F^{2}+G^{2}
\end{aligned}
\end{array}
$$

Plot in EFGH space

$$
\begin{aligned}
& \Delta=0 \quad\left(\frac{H}{E}\right)^{2}=\left(\frac{F}{E}\right)^{2}+\left(\frac{G}{E}\right)^{2}-1 \\
& \delta=0 \quad\left(\frac{H}{E}\right)^{2}=\left(\frac{F}{E}\right)^{2}+\left(\frac{G}{E}\right)^{2}
\end{aligned}
$$

$t=0 \quad$ plane at infinity

Compare with Q version

Plot in EFGH space

$$
\begin{array}{llll}
\Delta=0 & \left(\frac{H}{E}\right)^{2}=\left(\frac{F}{E}\right)^{2}+\left(\frac{G}{E}\right)^{2}-1 & \Delta=0 & \left(\frac{E}{H}\right)^{2}=\left(\frac{F}{H}\right)^{2}+\left(\frac{G}{H}\right)^{2}-1 \\
t=0 & \text { plane at infinity } & t=0 & \left(\frac{E}{H}\right)=0 \\
\delta=0 & \left(\frac{F}{E}\right)^{2}+\left(\frac{G}{E}\right)^{2}=\left(\frac{H}{E}\right)^{2} & \delta=0 & \left(\frac{F}{H}\right)^{2}+\left(\frac{G}{H}\right)^{2}=1
\end{array}
$$

More generally, rotate along E,H axis

$$
\left[\begin{array}{c}
E \\
H
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
\hat{E} \\
\hat{H}
\end{array}\right]
$$

$\theta=0^{\circ}$
$\theta=45^{\circ}$
$\theta=90^{\circ}$

Cross section

Roadmap of M

