CSE590B Lecture 6 Cubic Polynomials

Covariants and Resultants

James F. Blinn
JimBlinn. Com

http://courses.cs.washington.edu/courses/cse590b/13au/

Covariants of Cubic

$$
\begin{aligned}
& A_{J}=+A^{2} D-3 A B C+2 B^{3} \\
& B_{J}=-2 A C^{2}+A B D+B^{2} C \\
& C_{J}=-A C D+2 B^{2} D-B C^{2} \\
& D_{J}=-A D^{2}+3 B C D-2 C^{3}
\end{aligned}
$$

Syzygy of J

Hessian of J

Symmetrize? Like we did with:

J is already symmetrical!

Hessian of J

$$
\begin{aligned}
& =\rightarrow(\mathrm{H})_{2}(\mathrm{H})^{2}+(\mathrm{H}) \leftarrow
\end{aligned}
$$

$$
r_{2},(H)<=-2
$$

Hessian of J is same as
Hessian of C (up to a scale)

Discriminant of J

Sign of Discrim(J) is same as sign of Discrim(C)

Hessian of Linear Combo

$$
\rightarrow \mathbb{Q}_{K}^{6}=\alpha \rightarrow \mathrm{CO}_{K}+\beta \rightarrow \mathrm{O}_{\hat{K}}
$$

$$
\rightarrow \underset{\rightarrow}{B} B_{B}
$$

$$
\begin{aligned}
& \rightarrow C^{\infty}(D)<\rightarrow C^{c}
\end{aligned}
$$

$$
\begin{aligned}
& +\alpha \rightarrow C^{2}(D)<\beta+\beta \rightarrow \beta
\end{aligned}
$$

Hessian of Linear Combo

$$
\begin{aligned}
& \rightarrow \text { - }{ }^{-1} \text { 事 }
\end{aligned}
$$

$$
\begin{aligned}
& +\alpha \rightarrow C_{2}, D+\beta+\beta \rightarrow \sigma_{2} \quad D=\beta
\end{aligned}
$$

Locus of constant H for type 111

$$
\rightarrow \underbrace{\left.\alpha^{2}-2 \beta^{2}+\mathrm{B}\right) \leftarrow}_{\substack{\text { Always } \\ \text { positive }}}
$$

$$
\text { (H) }<0
$$

Locus of constant H for type 1 1/1

 (H) >0

If

$$
\alpha^{2}-2 \beta^{2}
$$

$$
\alpha= \pm \beta \sqrt{2 \cdot{ }_{(B)}^{(\Theta)}}
$$

$$
\rightarrow(B)^{-} B^{-}(B \leftarrow=\rightarrow
$$

\Rightarrow Triple Root

Locus of constant H for type 1 1/1

$$
\begin{aligned}
& \text { (H) }>0
\end{aligned}
$$

$\begin{aligned} & \text { Linear combo } \\ & \text { of } L^{3} \text { and } M^{3}\end{aligned}$
of L^{3} and M^{3}
MMM
TAll cubics with
Hessian H

Locus of constant H for type 1 1/1

$$
\begin{aligned}
& \text { (-1) }>0
\end{aligned}
$$

$$
\begin{aligned}
& \text { Hessian H }
\end{aligned}
$$

The two places the line hits the triple root curve are the cubes of the two factors of H

Locus of constant H for type 21

$$
\begin{aligned}
& \rightarrow\left(\mathbb{H} \leftarrow \leftarrow=\rightarrow(\mathbb{L})_{\left(\mathbb{M}_{E_{2}}\right)}^{(\mathbb{L})}(\mathbb{L})(\mathbb{L}) \leftarrow\right.
\end{aligned}
$$

If C is type 21 (double factor L),
J is type 3 (triple factor L)

Transform based on H

$$
\rightarrow\left(T \rightarrow=\rightarrow(H)^{-\Phi}\right.
$$

Trace:

$$
(\mathrm{T})=(\mathrm{H})=0
$$

So it's an involution

> Trace $=0 \Rightarrow$ involution (true only for 2×2 matrices)

Show via arc-swap:

So

Transform based on H

$$
\rightarrow(\mathrm{T}) \rightarrow=\rightarrow\left(H^{-\pi}\right.
$$

$$
\rightarrow\left(\mathrm{H}^{-}-(\mathrm{H})^{-}=\frac{1}{2} \xrightarrow{\text { (H)}}\right.
$$

Apply to H

$$
\rightarrow(H)^{-\pi}(H) \sim(H) \leftarrow=-\frac{1}{2} \rightarrow(H) \leftarrow H^{-1}
$$

Transform based on H

$$
\rightarrow(\mathrm{T}) \rightarrow=\rightarrow\left({ }^{-\pi}\right)^{\pi}
$$

Apply to C

Transform based on H

$$
\rightarrow T \rightarrow=\rightarrow(H)^{-}
$$

Transform \mathbf{C} by \mathbf{T}

Transform \mathbf{J} by \mathbf{T}

$$
\stackrel{\mathbf{T}}{\mathbf{C}(x, w)} \stackrel{\mathbf{J}}{ }(x, w)
$$

Roots of C, H, J

Root of C
Root of $H(\mathrm{C})$
Root of $J(\mathrm{C})$

Type 21
$\rightarrow(H)^{-\pi}=$ nilpotent $\rightarrow(H)^{-\pi}=$ mirror 45

Rank

Physics

$$
\begin{array}{cc}
{\left[\begin{array}{l}
A \\
B
\end{array}\right]} & {\left[\begin{array}{ll}
A & B \\
B & C
\end{array}\right]}
\end{array} \frac{\left[\left[\begin{array}{ll}
A & B \\
B & C
\end{array}\right]\left[\begin{array}{ll}
B & C \\
C & D
\end{array}\right]\right]}{1} c c c
$$

Mathematics

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
1
$$

$$
2
$$

3

Mathematical Rank of 2-Tensor
Rank 1
$\left[\begin{array}{ll}x & w\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x \\ w\end{array}\right]=x^{2} \quad\left[\begin{array}{ll}x & w\end{array}\right]\left[\begin{array}{ll}a^{2} & a b \\ a b & b^{2}\end{array}\right]\left[\begin{array}{l}x \\ w\end{array}\right]=(a x+b w)^{2}$

Rank 2

$$
\left[\begin{array}{ll}
x & w
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
w
\end{array}\right]=x^{2}+w^{2}
$$

$$
\left[\begin{array}{ll}
x & w
\end{array}\right]\left[\begin{array}{ll}
A & B \\
B & C
\end{array}\right]\left[\begin{array}{l}
x \\
w
\end{array}\right]=(a x+b w)^{2} \pm(c x+d w)^{2}
$$

Mathematical Rank of 3-Tensor

Rank 1
$\left[\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]\right]=x^{3} \quad\left[\left[\begin{array}{cc}a^{3} & a^{2} b \\ a^{2} b & a b^{2}\end{array}\right]\left[\begin{array}{cc}a^{2} b & a b^{2} \\ a b^{2} & b^{3}\end{array}\right]\right]=(a x+b w)^{3}$
Rank 2
$\left[\left[\begin{array}{ll}\bullet & \bullet \\ \bullet & \bullet\end{array}\right]\left[\begin{array}{ll}\bullet & \bullet \\ \bullet & \bullet\end{array}\right]\right]=(a x+b w)^{3}+(c x+d w)^{3}$
Rank 3
$\left[\left[\begin{array}{ll}\bullet & \bullet \\ \bullet & \bullet\end{array}\right]\left[\begin{array}{ll}\bullet & \bullet \\ \bullet & \bullet\end{array}\right]\right]=(a x+b w)^{3}+(c x+d w)^{3}+(e x+f w)^{3}$

Rank of Cubic

Rank 3
Type 21
(Not unique)

IEEE CG\&A Articles

How to Solve a Cubic Equation

Part 1 - The Shape of the Discriminant May/Jun 2006, pages 84-93

Part 2 - The 11bar Case Jul/Aug 2006, pages 90-100

Part 3 - General Depression and a New Covariant Nov/Dec 2006, pages 92-102

Part 4 - The 111 case Jan/Feb 2007,

Part 5 - Back to Numerics May/Jun 2007

Solving Numerically

$$
\mathbf{C}(x, w)=A x^{3}+3 B x^{2} w+3 C x w^{2}+D w^{3}
$$

Translate to get $\mathrm{B}=0$

$$
\left[\begin{array}{ll}
x & w
\end{array}\right]=\left[\begin{array}{ll}
\tilde{x} & \tilde{w}
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-B & A
\end{array}\right]
$$

General transform to get $\mathrm{B}=0$
"Depress" C

$$
\left[\begin{array}{ll}
x & w
\end{array}\right]=\left[\begin{array}{cc}
\tilde{x} & \tilde{w}
\end{array}\right]\left[\begin{array}{ll}
t & u \\
s & v
\end{array}\right]
$$

IEEE CG\&A article
"General Depression and a New Covariant"

High Class Spam

Dear Dr. Blinn,

From your article titled "How to solve a cubic equation, part 3: general depression and a new covariant." (IEEE Comput Graph Appl. 2006 Nov-Dec;26(6):92-102.), we learned of your research in the area of Depression and thought you might be interest in knowing that GenWay offers an ELISA kit for the in-vitro diagnostic quantitative determination of Serotonin in various biological fluids.

You can click the following link to our website in order to view the datasheet: Serotonin ELISA Kit

Resultants

Resultant of Two Quadratics

$$
(0, \mathrm{~B})=\mathbb{Q}, 0,+\infty
$$

Invariants of Two Quadratics

$$
=
$$

Invariants of Two Quadratics

Resultant of Two Quadratics (v1)

$$
\rho(\mathrm{Q}, \mathrm{R})=
$$

$$
\text { (Q) (B) }=2
$$

$$
\rho(Q, R)=- \text { Q }
$$

Resultant of Two Quadratics (v1)

$$
\rho(\mathrm{Q}, \mathrm{R})=
$$

$$
\text { (Q) (B) }=2
$$

$$
\rho(Q, R)=- \text { Q }
$$

Resultant of Two Quadratics (vi)

$$
\rho(Q, R)=-(R)
$$

Resultant of Two Quadratics (v1)

$$
\begin{aligned}
& \rho(Q, R)=-(B) \\
& \rightarrow(R) \leftarrow=\rightarrow(\mathbb{K}(\mathbb{L}) \leftarrow+\rightarrow(L) \mathbb{K}) \leftarrow
\end{aligned}
$$

$$
\left.\rho(Q, R)=4()^{(L)} \longleftarrow \mathrm{L}\right)^{(L)} \text { is a factor of } \mathrm{Q}
$$

Resultant of Two Quadratics (v2)

Resultant of Two Quadratics (v2)

(0,1) $\rightarrow \underset{\uparrow}{\downarrow} \stackrel{\downarrow}{\AA R}=\frac{\downarrow}{\uparrow}$

Resultant of Two Quadratics (v2)

$$
\stackrel{(1,0)}{\rightarrow} \underset{\uparrow}{\downarrow}=\underset{\uparrow}{\natural}
$$

$$
(0,1) \rightarrow \underset{\uparrow}{\downarrow} \underset{\uparrow}{\downarrow}
$$

Resultant of Two Cubics

Two Cubics, both with a root at 0

Slice thru X, Y, Z space at $Z=D / A=0$

Two Cubics have a common (real) root iff

The line connecting them is tangent to the discrim surface

Tangent to surface from each point

Slice thru X, Y, Z space at $Z=D / A=0$
From each point \mathbf{C}
There will be one plane tangent to the surface for each real root of \mathbf{C}

Geometry of Resultants

Quadratic

Cubic

Resultant of Two Cubics

Possible Topologies

Distribute 3 each C and D

Examples:

But only need CD connected diagrams since:

Five Possible CD diagrams

It can be shown that:

$$
\begin{aligned}
3 I_{2} D_{3} & =I_{2}^{3}-2 T_{3} \\
3 T_{2 a} & =T_{0 b}-2 T_{3}
\end{aligned}
$$

Resultant of Two Cubics

After some symbolic programming

+ (
$+\mathrm{CO}_{\mathrm{M}}^{\mathrm{L})}$
$I_{2}{ }^{3}=+216 \alpha$

$$
T_{3}=\quad-72 \gamma
$$

$$
T_{0 b}=-24 \alpha+72 \gamma+24 \rho
$$

$$
6^{3} \rho=\left(I_{2}\right)^{3}+9\left(T_{o b}+T_{3}\right)
$$

Resultant of Two Cubics

$$
6^{3} \rho=\left(I_{2}\right)^{3}+9\left(T_{0 b}+T_{3}\right)
$$

Resultant of Two Cubics

Among the many possible diagrams:

It can be shown that:

$$
\begin{aligned}
& D_{2}^{3}-8 D_{0}-4 D_{6}=0 \\
& \rho(\mathbf{C}, \mathbf{D})=-11 D_{2}^{3}+36 D_{6} \\
& \rho(\mathbf{C}, \mathbf{D})=-2 D_{2}^{3}-72 D_{0}
\end{aligned}
$$

