Exploring patterns enriched in a dataset with contrastive principal component analysis

Abid et al., Nature Communications 2018

- 1. Motivation
- 2. Quick review of PCA
- 3. Intro to contrastive PCA
- 4. Results
- 5. Algorithmic details
- 6. Discussion

1. Motivation

- 2. Quick review of PCA
- 3. Intro to contrastive PCA
- 4. Results
- 5. Algorithmic details
- 6. Discussion

Motivation

- Computational biologists love visualizing new datasets
- Many widely-used approaches for summarizing data/visualizing it in 2D
- Commonly used methods include PCA t-SNE/UMAP

Problems with PCA

- Oftentimes (especially in biology) we want to explore variations enriched in one (target) dataset compared to another (background) dataset
- Data from sick vs. healthy patients, treatment vs. control, etc.
- Unfortunately, enriched variations may be subtle compared to overall variations

Example

- 1. Motivation
- 2. Quick review of PCA
- 3. Intro to contrastive PCA
- 4. Results
- 5. Algorithmic details
- 6. Discussion

PCA review

PCA review

PCA review

- Direction that minimizes residuals also maximizes variance of projections
- Is an eigenvector of the covariance matrix of the data
 - In particular, the eigenvector with largest eigenvalue
- Unfortunately, if covariance matrix dominated by background variations, the direction we pick won't reflect enriched variations in target

- 1. Motivation
- 2. Quick review of PCA
- 3. Intro to contrastive PCA
- 4. Results
- 5. Algorithmic details
- 6. Discussion

Contrastive PCA

- Idea: enriched variations are (by definition) found only in target points, not in background
- Find directions that have high variance in target dataset, low variance in background dataset

Contrastive PCA

- Target dataset: $oldsymbol{x}_i \in \mathbb{R}^d$
- Background dataset: $oldsymbol{y}_j \in \mathbb{R}^d$
- Target/background covariance matrices: $C_{\boldsymbol{x}}$ / $C_{\boldsymbol{y}}$
- Target Variance: $\lambda_X(oldsymbol{v}) = oldsymbol{v}^T C_X oldsymbol{v}$
- Background Variance: $\lambda_Y(oldsymbol{v}) = oldsymbol{v}^T C_Y oldsymbol{v}$

Contrastive PCA

Concept Figure/Simulated Data Results

Contrastiveness

Definition 1. (Contrastiveness) For two directions $\mathbf{v}_1, \mathbf{v}_2 \in \mathbb{R}^d_{unit}, \mathbf{v}_1$ is more contrastive than \mathbf{v}_2 with respect to the target and the background covariance matrices C_X and C_Y , written as $\mathbf{v}_1 \succ \mathbf{v}_2$, if one of the following is true:

(1)
$$\lambda_X(\mathbf{v}_1) \ge \lambda_X(\mathbf{v}_2)$$
, and $\lambda_Y(\mathbf{v}_1) < \lambda_Y(\mathbf{v}_2)$
(2) $\lambda_X(\mathbf{v}_1) > \lambda_X(\mathbf{v}_2)$, and $\lambda_Y(\mathbf{v}_1) \le \lambda_Y(\mathbf{v}_2)$.

Contrastiveness and cPCA

 Can show that cPCA directions are always "most contrastive" (i.e., no directions are more contrastive)

- 1. Motivation
- 2. Quick review of PCA
- 3. Intro to contrastive PCA

4. Results

- 5. Algorithmic details
- 6. Discussion

AML scRNA-seq

Mice Protein

Mexican Ancestry

- 1. Motivation
- 2. Quick review of PCA
- 3. Intro to contrastive PCA
- 4. Results
- 5. Algorithmic details
- 6. Discussion

The role of alpha

How to choose alpha?

Algorithm 2 cPCA with Auto Selection of α

Inputs: target data $\{\mathbf{x}_i\}_{i=1}^n$; background data $\{\mathbf{y}_i\}_{i=1}^m$; list of possible contrastive parameters $\{\alpha_i\}$; the number of components k; the number of α 's to present p.

for each α_i do

Compute the subspace V_i using Algorithm 1 with the contrast parameter set to α_i .

end for

How to choose alpha?

for each pair V_i, V_j do

Compute the principal angles $\theta_1 \dots \theta_k$ between V_i, V_j

Define the affinity $d(V_i, V_j) = \prod_{h=1}^k \cos \theta_h$

end for

With $D_{ij} = d(V_i, V_j)$ as an affinity matrix between subspaces, do spectral clustering on D to produce p clusters.

How to choose alpha?

for each cluster of subspaces $\{c_i\}_{i=1}^p$ do Compute its medoid, V_i^* the subspace defined as

$$V_i^* \stackrel{\text{def}}{=} \arg\min V \in c_i \sum_{V' \in c_i} d(V, V')$$

Let α_i^* be the contrast parameter corresponding to V_i^* . end for Return: $\alpha_1^* \cdots \alpha_p^*$ and the subspaces $V_1^* \cdots V_p^*$.

Summary of alpha choosing procedure

- Try a bunch of alphas and get the resulting subspaces
- Measure how similar each pair of subspaces is
- Cluster subspaces based on their similarities
- Pick a representative subspace/alpha from these clusters
- Return list of potential alphas

Different alpha values for mice protein

Different alpha values for scRNA-seq

Different alpha values for Mexican heritage

- 1. Motivation
- 2. Quick review of PCA
- 3. Intro to contrastive PCA
- 4. Results
- 5. Algorithmic details
- 6. Discussion

Discussion Questions

- What do people think of the definition of "contrastiveness"?
- Are people ok with the selection process for alpha?
- How useful would cPCA be when labels aren't available?
- Could cPCA be extended to other cases?