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A (brief) primer on neural nets
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Artificial Neurons

e Edges like dendrites/axons

e Inputs to edges multiplied by
edge weights — summed up
to “activate” neurons
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Activation Functions
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Problem

e Models are hard to interpret
e Too many parameters for a human to comprehend
e Intermediate nodes don’t correspond to interpretable concepts



Interpretable ML- Bio edition

AKA- why Lee’s excited for this revolution

1)
2)
3)
4)

No black box — fewer dumb errors
No black box — potentially less bias
No black box — faster results?

No black box — better results?



Interpretable ML- Bio edition

AKA- why Lee’s excited for this revolution

1) No black box — fewer dumb errors
2) No black box — potentially less bias
3) No black box — faster results?

4) No black box — better results?

Learned that an address to the specialty clinic was more
likely to be a specific kind of cancer*

*I could not find the paper on this, maybe | saw it in a casual presentation of someone’s work?



Interpretable ML- Bio edition

AKA- why Lee’s excited for this revolution

1) No black box — fewer dumb errors

2) No black box — potentially less bias

3) No black box — faster results?
4) No black box — better results?

“Within the field of anaesthesiology, a preliminary
multicentre analysis of data from 40 institutions by
White and colleagues11 revealed that Black
patients received inferior care (with respect to
postoperative nausea and vomiting prophylaxis)
both in aggregate and individually at nearly every
single centre.”

Bias and ethical consideration in machine learning and the automation of perioperative risk assessment.

British Journal of Anaesthesia. 2020. O’Reilly-Shah et al.

DOI: https://doi.org/10.1016/j.bja.2020.07.040



https://bjanaesthesia.org/article/S0007-0912(20)30631-0/fulltext#bib11
https://doi.org/10.1016/j.bja.2020.07.040
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AKA- why Lee’s excited for this revolution
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No black box — fewer dumb errors
No black box — potentially less bias

3)

No black box — faster results?
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No black box — better results?
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This paper’s KPNN is much sparser and has few layers.



Interpretable ML- Bio edition

AKA- why Lee’s excited for this revolution

1) No black box — fewer dumb errors

2) No black box — potentially less bias

3) No black box — faster results?

4) No black box — better results? o

What does it mean to be
“‘better’? More accurate? More
equitable? More interpretable?
More accountable?




Previous work on interpretability

e Post-hoc (interpret a specific prediction after it's been made)
e \What features were important for this prediction?
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Problems with previous approaches
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e Doesn’t help when you have lots of
features (e.g. genes) or a hierarchy
of concepts (e.g. genes —
pathways)

o Not super useful for biological discovery

e Post-hoc methods can be “tricked”

with adversarial examples
o Are these explanations meaningful?
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KPNNSs - knowledge-primed neural networks

Vs

ANNSs - artificial neural network

Prediction data
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Experiment 1a: Simulated data

e One set of predictive genes
connected to intermediate node (A)

e Other genes not predictive

e KPNN consistently gives A a much
higher weight

KPNN node weights reflect
biological relevance
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Experiment 1b: Simulated data

e Biological networks have
redundancy in the real-world

e Multiple intermediate nodes
connected to predictive genes

e Model weights are lower + have
high variance :(

b Standard learning suffers from
inconsistent node weights
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Solution: Dropout

During training, zero-out nodes
randomly

Stops model from just fitting to one
particular input — output
relationship

More likely to capture all relevant
relationships




Dropout results

Dropping-out intermediate nodes
leads to multiple relationships being
captured

Learning with dropout achieves
robust node weights
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Dropout results

d Standard learning fails to
quantify relative importance
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eDropout on input nodes enables
quantitative interpretability
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One more problem: Uneven connections

: : Control inputs quantify
Node weights might reflect f the uneven connectivity

connectivity rather than PY
predictiveness

Experiment on “control” genes with
same amount of predictiveness

Control inputs

All genes set to the same level of predictiveness
o 1.001
et

= |
© 0754 | .,

0.50 {.
Q ["

0.25- '7J=J=

0.00+

Node we

AB 12345678910
Node



One more problem: Uneven connections

Unadjusted node weights reflect

e “Non-predictive” intermediate node 9 both data and uneven connectivity

still has non-zero weight s N
o Would expect near-zero given lack of Realistic data
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Node normalization

f Control inputs quantify g Unadjusted node weights reflect Comparison to control weights
the uneven connectivity both data and uneven connectivity " 'normalizes for uneven connectivity
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Validation on more complex datasets

Human cell atlas
e 500,000 transcriptomes

e 3 cell types
e 2organs
Takeaway:

Could accurately predict cell
type from gene expression in
an interpretable way that
corresponds to known
biology
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Discussion

e \Weighing tradeoffs of accuracy vs. interpretability
o What are the scenarios appropriate for each method?
o  Will this method inherently be less accurate?
m Compared to other ML?
m Compared to ground truth?
e Database problems (painful to set up, painful to sanity check as a biologist)

o Are there problem sets with not enough biological data yet?
o So far, there haven’t been huge validation experiments (i.e. with high-throughput CRISPR
screens), will we see different behavior?

e Are there problems this highly labeled node and edge structure will struggle
with?
e Are we convinced KPNNs are the way forward for interpretable ML?



