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* Chan, T. E., Stumpf, M. P. H. & Babtie, A. C. Gene 
regulatory network inference from single-cell data 
using multivariate information measures. Cell Syst. 
5, 251–267 (2017).



- What is a Gene Regulatory Network?

- Datasets: 400 Simulated and 5 Real sc-data

- Synthetic, Curated (synthetic) and Real Single-cell data

- BoolODE

- Methods: 12 Different Algorithms for GRN Inference

- Random Forest

- ODE and Regression

- Correlation / Mutual Information / Causality

- Benchmarking Results



Simple in-silico single-cell gene expression 

datasets

- Not affected by pseudotime inference alg.

- Simple trajectories for these networks 

(linear, cycle ..)

- Used BoolODE  to simulate the networks 

(coming up in the next set of slides)



End product

- Used BoolODE by sampling parameters 10 

times (5000 simulations per parameter set )

- 5 datasets per parameter set, one each with 

100, 200, 500, 2000  and 5000 cells by 

sampling one cell per simulation. Finally got 

50 different expression sets

- On the right is 2-D projection



Boolean models

- Viz. Mammalian cortical area 
development (mCAD), ventral spinal 
cord (VSC) development, 
hematopoietic stem cell (HSC) 
differentiation and gonadal sex 
determination (GSD)

- Used BoolODE  to simulate it - 10 
different sets with 2000 cells for each 
model

- Pseudotime using Slingshot



Single-cell RNA-seq datasets

- 2 in human and 3 in mouse cells (Total 7 cell types)

Dataset Reference Species Starting cell 
type Ending cell type(s) #Cells #Genes # TFs

mHSC-E

Nestorowa et al.1

Mouse HSCs Erythroid 1,071 2,634 204

mHSC-L   Lymphoid 847 692 60

mHSC-GM   Granulocyte-Macrophage 889 1,595 132

mESC Hayashi et al. 2 Mouse mESCs Primitive endoderm 421 8,150 620

mDC Shalek et al. 3 Mouse DCs - 383 3,755 321

hHep Camp et al. 4 Human iPSCs Mature hepatocytes 425 4,336 311

hESC Chu et al. 5 Human hESCs Definitive endoderm 758 4,406 330



Single-cell RNA-seq datasets - Ground truth

- 2 in human and 3 in mouse cells (Total 7 cell types)

Mouse

Source #TFs #Genes (incl. TFs) #Edges Density Gene expression dataset

mHSC, E, L, G-M ChIP-Atlas 137 19,324 1,078,888 0.407 mHSC, Nestorowa et al.1

mESC, ESCAPE+ ChIP-Atlas 247 25,703 6,348,394 0.154 mESC, Hayashi et al.2

mESC, LOGOF, ESCAPE 57 18,427 104,797 0.1 mESC, Hayashi et al. 2

DC, ChIP-Atlas 36 11,092 30,658 0.077 mDC, Shalek et al. 3

TRRUST + RegNetwork 1,455 17,852 100,139 0.004
All mouse datasets

STRING 1,350 7,771 157,134 0.015

Human

HEPG2, ChEA + ChIP-Atlas 84 16,822 342,862 0.243 Camp et al. 4

hESC, ChEA + ChIP-Atlas 130 18,104 436,563 0.186 Chu et al. 5

TRRUST + RegNetwork + DoRothEA 2,165 23,566 386,293 0.008
All human datasets

STRING 1,489 8,806 198,285 0.015
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To sample a dataset of N cells:

1. Initialize gene and protein concentrations

    [xi], [pi] at time 0 for every gene i.

2. Simulate the system ODE.

3. Sample state at an end time t. 



To sample a dataset of N cells:

1. Initialize gene and protein concentrations

    [xi], [pi] at time 0 for every gene i.

2. Simulate the stochastic system ODE.

3. Sample state at an end time t. 



- The regulatory function f(Ri) is constructed 

from the (known) GRN (regulator set Ri).

E.g. Gene X is governed by activator proteins 

P (or) Q, and inhibited by R.



- The regulatory function f(Ri) is constructed 

from the (known) GRN (regulator set Ri).

=> f is a Hill function with P and Q in 

numerator and P, Q and R in denominator.

Parameters globally shared across genes.

Set to achieve target steady states.
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Algorithms based on predicting or modeling gene 

expression based on other gene profiles.

 - GENIE3 (Random Forest)

 - GRNBOOST2 (Random Forest)

 - SCODE (ODE + Regression)

 - SINCERITIES (Sparse Regression)

 - GRISLI (ODE + Regression)



Idea ( for Genes  j = 1 to p)

➢ Generate the learning sample of 

input-output pairs for gene j:

Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P 
(2010) Inferring Regulatory Networks from 
Expression Data Using Tree-Based Methods. PLoS 
ONE 5(9): e12776. 

GENIE3 (for “GEne Network Inference with 
Ensemble of trees”)
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LSj to get confidence intervals wi,j
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Idea ( for Genes  j = 1 to p)

➢ Generate the learning sample of

          input-output pairs for gene j:

➢ Use feature selection technique on 

LSj to get confidence intervals wi,j

➢ Aggregate the p individual gene 

rankings to get global rankings Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P 
(2010) Inferring Regulatory Networks from 
Expression Data Using Tree-Based Methods. PLoS 
ONE 5(9): e12776. 



TF expression dynamics throughout differentiation with linear ordinary differentiation equations 

(ODEs) :

dx = Axdt

where x is a vector of length G (G is the number of TFs) that denotes the expression of TFs and A 
corresponds to a square matrix with dimensions equal to G that denotes the regulatory network 
among TFs.

- Infer TF regulatory network by optimizing A such that the ODE can successfully 
describe the observed expression data at a time point.

- Pseudotime data also required as input. Matsumoto H, Kiryu H, Furusawa C, Ko MSH, Ko SBH, 
Gouda N, Hayashi T, Nikaido I. SCODE: an efficient 
regulatory network inference algorithm from single-cell 
RNA-Seq during differentiation. Bioinformatics. 2017 
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Algorithms based on measuring amount of 

information one gene provides of another gene.

 - PIDC (Mutual Information)

 - PPCOR (Correlation)

 - SCRIBE (Mutual Information)

 - SINGE (Granger Causality)

 - LEAP (Correlation)



Partial Correlation

 - Degree of association between two 

random variables, with the effect of a set 

of controlling random variables removed.

* Kim, S. ppcor: An R package for a fast calculation to 
semi-partial correlation coefficients. Commun. Stat. Appl. 
Methods 22, 665–674 (2015).



Partial Correlation

 - Degree of association between two 

random variables, with the effect of a set 

of controlling random variables removed.

Example: Variables X, Y, Z

 (a) pXY*Z = pXY

 (b) pXY*Z != pXY

 (c) pXY*Z != pXY
* Kim, S. ppcor: An R package for a fast calculation to 
semi-partial correlation coefficients. Commun. Stat. Appl. 
Methods 22, 665–674 (2015).



PPCOR Algorithm for GRNs:

 1. Calculate pXY*Z for all pairs of genes X and Y, 

removing the effects of all other genes Z.

 2. Use coefficients pXY*Z as interaction weights 

in the GRN. Sign = Activation / Inhibition.

X ... ... Z ... ... Y

sc RNA-Seq data

pXY*Z = -0.73

...

X

Y

...

-0.
73



PPCOR Algorithm Properties:

 - Does not rely on pseudo-time.

 - Undirected GRN graph.

 - Signed GRN graph.

X ... ... Z ... ... Y

sc RNA-Seq data

pXY*Z = -0.73

...

X

Y

...

-0.
73



Mutual Information

 - Entropy H(X): Degree of uncertainty in X

* Chan, T. E., Stumpf, M. P. H. & Babtie, A. C. Gene regulatory 
network inference from single-cell data using multivariate 
information measures. Cell Syst. 5, 251–267 (2017).
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Mutual Information

 - Entropy H(X): Degree of uncertainty in X

 - Mut. Information I(X, Y): Amount of 

information that X provides about Y

 - PID (Partial Inf. Decomp.) I(Z; X, Y): How 

much information X, Y provide about Z.

- There is a relationship between I(X, Z) and 

components of the PID. * Chan, T. E., Stumpf, M. P. H. & Babtie, A. C. Gene regulatory 
network inference from single-cell data using multivariate 
information measures. Cell Syst. 5, 251–267 (2017).



The PUC (Prop. Unique Contribution):

 - Computed between two genes X and Y as 

the sum of the ratio UniqueZ(X; Y) / I(X; Y) for 

every other gene Z in a network.

 - The mean proportion of MI between two 

genes X and Y that is accounted for by their 

unique information only (information from 

other genes has been removed). * Chan, T. E., Stumpf, M. P. H. & Babtie, A. C. Gene regulatory 
network inference from single-cell data using multivariate 
information measures. Cell Syst. 5, 251–267 (2017).



PIDC Algorithm for GRNs:

 1. Calculate PUC(X; Y) for all pairs of genes X and 

Y, removing the effects of all other genes Z.

 2. Calculate per-gene thresholds to keep only 

the most significant PUC’s.

 3. Use PUC(X; Y) as the interaction strength 

between genes X and Y.

X ... ... Z ... ... Y

sc RNA-Seq data

PUC(X; Y) = 0.2

...

X

Y

...

0.2



PIDC Algorithm for GRNs:

 - Does not rely on pseudo-time.

 - Undirected GRN graph.

 - Unsigned GRN graph.

Comment from authors: Fewer false positives 

(indirect connections) compared to PPCOR

X ... ... Z ... ... Y

sc RNA-Seq data

PUC(X; Y) = 0.2

...

X

Y

...

0.2



Pseudo-time ordering

 - Pre-processing step

 - In: Gene-cell count matrix

 - Out: Gene-cell count matrix

   sorted such that cell i “precedes” j, i < j

 - LEAP internally uses Monocle for this

* Specht, A. T. & Li, J. LEAP: constructing gene co-expression 
networks for single-cell RNA-sequencing data using 
pseudotime ordering. Bioinformatics 33, 764–766 (2017).
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Pseudo-time ordering

 - Pre-processing step

 - In: Gene-cell count matrix

 - Out: Gene-cell count matrix

   sorted such that cell i “precedes” j, i < j

 - LEAP internally uses Monocle for this

* Specht, A. T. & Li, J. LEAP: constructing gene co-expression 
networks for single-cell RNA-sequencing data using 
pseudotime ordering. Bioinformatics 33, 764–766 (2017).
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Lag-based correlation testing

 - Tests for correlation between gene i and j, 

but over windows of pseudo-time delay.

 - Time series for gene i: Xi, 1, …, Xi, s

 - Time series for lagged gene j: Xi, l+1, …, Xi, l+s

 - Interaction strength = maxl |pijl|

X ... ... Z ... ... Y

sc RNA-Seq data

maxl|pxyl| = 0.4

...

X

Y

...

0.4



LEAP Algorithm for GRNs:

 - Relies on pseudo-time.

 - Directed GRN graph.

 - Unsigned GRN graph.

X ... ... Z ... ... Y

sc RNA-Seq data

maxl|pxyl| = 0.4

...

X

Y

...

0.4
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 - Each algorithm tested on each of the six types

   of synthetic datasets (Linear, Cycle, Long

   Linear, Bifurc., Bicurfc. Converg., Trifurc.).

 - Test the ability to infer edges in the GRN.



 - Each algorithm tested on each of the six types

   of synthetic datasets (Linear, Cycle, Long

   Linear, Bifurc., Bicurfc. Converg., Trifurc.).

 - Test the ability to infer edges in the GRN.

 - AUPRC Ratio: Divide area under precision-

   recall curve by that of random predictor.

 - Stability: For all datasets of a single type,

   compare the Top-K-edges (Jaccard Index).



 - Not shown: Varying the number of cells (100 -

   5,000) had no significant effect on GENIE3,

   GRNVBEM, LEAP, SCNS and SCODE.



 - Each algorithm tested on each of the four

   curated GRN datasets.

 - Best algorithms on synthetic GRNs:

   SINCERITIES, SCRIBE and SINGE

   Close to random perf. on curated GRNs.

 - Possible causes:

   Denser sub-networks.



 - Not shown: Most methods had significant

   drops in AUPRC ratio with either 50% or 70%

   dropout.

 - The four methods not affected by dropout:

   GRNVBEM, LEAP, SCRIBE and SINCERITIES

   Had worse than random AUPRC on on the

   mCAD and VSC datasets.



 - Pseudo-time ordered

   algorithms are much

   worse on real sc

   RNA-Seq data

   E.g.

   SCODE, SINCERITIES

 - Possible causes:

   Noise pseudo-time.



Recommendation:

 - PIDC, GENIE3 and

   GRNBoost2.

 - GENIE3 and PIDC had

   better stability.

 - GRNBoost2 faster

   than GENIE3.



 - Surprisingly, classical algorithms designed for bulk transcriptomics data

   (GENIE3, PPCOR) outperformed specialized algorithms such as LEAP or SINCERITIES. 

 - Is Inference (GRN) based on already inferred data (pseudo-time) the culprit?

 - What other data could be incorporated to increase performance?

 - Do we believe in the BoolODE-simulated single-cell datasets?


