

Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data

Presented by: Aji John & Johannes Linder, Yuliang Wang

UNIVERSITY of WASHINGTON

Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data

Aditya Pratapa¹, Amogh P. Jalihal², Jeffrey N. Law², Aditya Bharadwaj¹ and T. M. Murali¹

Overview

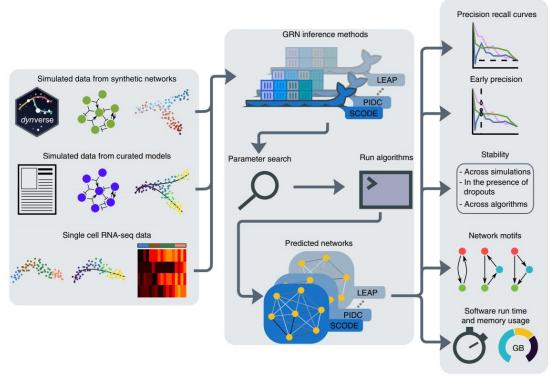


Fig. 1 | An overview of the BEELINE evaluation framework. We apply GRN inference algorithms to three types of data: datasets from synthetic networks,

UNIVERSITY of WASHINGTON

- What is a Gene Regulatory Network?
- Datasets: 400 Simulated and 5 Real sc-data
 - Synthetic, Curated (synthetic) and Real Single-cell data
 - BoolODE
- Methods: 12 Different Algorithms for GRN Inference
 - Random Forest
 - ODE and Regression
 - Correlation / Mutual Information / Causality
- Benchmarking Results

- What is a Gene Regulatory Network?
- Datasets: 400 Simulated and 5 Real sc-data
 - Synthetic, Curated (synthetic) and Real Single-cell data
 - BoolODE
- Methods: 12 Different Algorithms for GRN Inference
 - Random Forest
 - ODE and Regression
 - Correlation / Mutual Information / Causality
- Benchmarking Results

What is a Gene Regulatory Network?

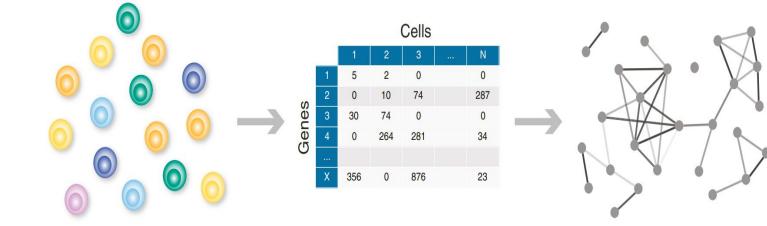


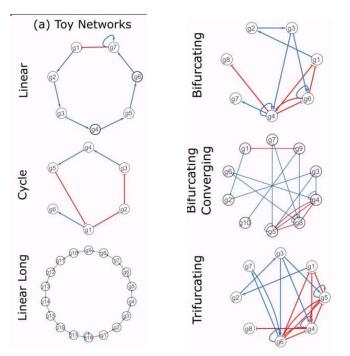
Figure 1. Network Inference from Single-Cell Data

- What is a Gene Regulatory Network?
- Datasets: 400 Simulated and 5 Real sc-data
 - Synthetic, Curated (synthetic) and Real Single-cell data
 - BoolODE
- Methods: 12 Different Algorithms for GRN Inference
 - Random Forest
 - ODE and Regression
 - Correlation / Mutual Information / Causality
- Benchmarking Results

Synthetic GRN datasets

Simple in-silico single-cell gene expression datasets

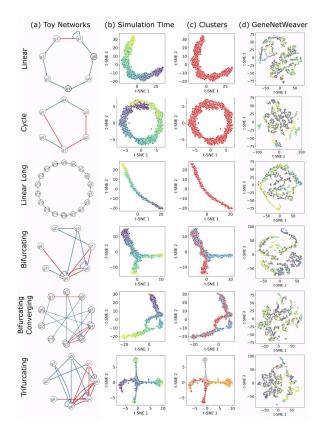
- Not affected by pseudotime inference alg.
- Simple trajectories for these networks (linear, cycle ..)
- Used BoolODE to simulate the networks (coming up in the next set of slides)



Synthetic GRN datasets

End product

- Used BoolODE by sampling parameters 10 times (5000 simulations per parameter set)
- 5 datasets per parameter set, one each with 100, 200, 500, 2000 and 5000 cells by sampling one cell per simulation. Finally got 50 different expression sets
- On the right is 2-D projection



Curated, simulated GRN datasets

Boolean models

- Viz. Mammalian cortical area development (mCAD), ventral spinal cord (VSC) development, hematopoietic stem cell (HSC) differentiation and gonadal sex determination (GSD)
- Used BoolODE to simulate it 10 different sets with 2000 cells for each model
- Pseudotime using Slingshot

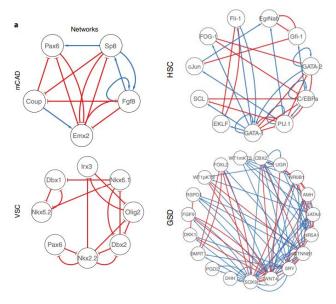


Fig. 3 | Visualization of t-SNE projections

Human & Mouse sc-Seq datasets

Single-cell RNA-seq datasets

- 2 in human and 3 in mouse cells (Total 7 cell types)

Dataset	Reference	Species	Starting cell type	Ending cell type(s)	#Cells	#Genes	# TFs
mHSC-E		Mouse	HSCs	Erythroid	1,071	2,634	204
mHSC-L	Nestorowa <i>et al.</i> 1			Lymphoid	847	692	60
mHSC-GM				Granulocyte-Macrophage	889	1,595	132
mESC	Hayashi <i>et al.</i> ²	Mouse	mESCs	Primitive endoderm	421	8,150	620
mDC	Shalek <i>et al.</i> ³	Mouse	DCs	-	383	3,755	321
hHep	Camp <i>et al.</i> ⁴	Human	iPSCs	Mature hepatocytes	425	4,336	311
hESC	Chu <i>et al.</i> ⁵	Human	hESCs	Definitive endoderm	758	4,406	330

Human & Mouse sc-Seq datasets

Single-cell RNA-seq datasets - Ground truth

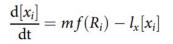
- 2 in human and 3 in mouse cells (Total 7 cell types)

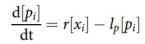
	Source	#TFs	#Genes (incl. TFs)	#Edges	Density	Gene expression dataset	
	mHSC, E, L, G-M ChIP-Atlas	137	19,324	1,078,888	0.407	mHSC, Nestorowa <i>et al.</i> ¹	
Mouse	mESC, ESCAPE+ ChIP-Atlas	247	25,703	6,348,394	0.154	mESC, Hayashi <i>et al.</i> ²	
	mESC, LOGOF, ESCAPE	57	18,427	104,797	0.1	mESC, Hayashi <i>et al.</i> ²	
	DC, ChIP-Atlas	36	11,092	30,658	0.077	mDC, Shalek <i>et al.</i> ³	
	TRRUST + RegNetwork	1,455	17,852	100,139	0.004	All mouse datasets	
	STRING	1,350	7,771	157,134	0.015		
	HEPG2, ChEA + ChIP-Atlas	84	16,822	342,862	0.243	Camp <i>et al.</i> ⁴	
Human	hESC, ChEA + ChIP-Atlas	130	18,104	436,563	0.186	Chu <i>et al.</i> ⁵	
	TRRUST + RegNetwork + DoRothEA	2,165	23,566	386,293	0.008	All human datasets	
	STRING	1,489	8,806	198,285	0.015		

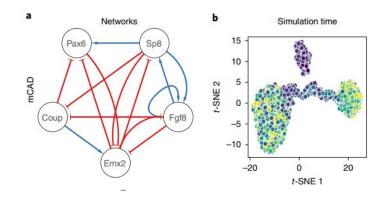
- What is a Gene Regulatory Network?
- Datasets: 400 Simulated and 5 Real sc-data
 - Synthetic, Curated (synthetic) and Real Single-cell data
 - BoolODE
- Methods: 12 Different Algorithms for GRN Inference
 - Random Forest
 - ODE and Regression
 - Correlation / Mutual Information / Causality
- Benchmarking Results

To sample a dataset of N cells:

- 1. Initialize gene and protein concentrations [x_i], [p_i] at time 0 for every gene i.
- 2. Simulate the system ODE.
- 3. Sample state at an end time t.







To sample a dataset of N cells:

- 1. Initialize gene and protein concentrations [x_i], [p_i] at time 0 for every gene i.
- 2. Simulate the <u>stochastic</u> system ODE.
- 3. Sample state at an end time t.

$$\frac{\mathrm{d}[x_i]}{\mathrm{d}t} = mf(R_i) - l_x[x_i]$$

$$\frac{\mathrm{d}[p_i]}{\mathrm{d}t} = r[x_i] - l_p[p_i]$$

$$\oint$$

$$\frac{\mathrm{d}[x_i]}{\mathrm{d}t} = mf(R_i) - l_x[x_i] + s\sqrt{[x_i]}\Delta W_t$$

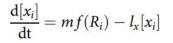
$$\frac{d[p_i]}{dt} = r[x_i] - l_p[p_i] + s\sqrt{[p_i]}\Delta W_t$$

 $\Delta W_t = \mathcal{N}(0,h)$

- The regulatory function $f(R_i)$ is constructed from the (known) GRN (regulator set R_i).

 $X = (P \lor Q) \land \neg(R)$

E.g. Gene X is governed by activator proteins P (or) Q, and inhibited by R.



The regulatory function f(R_i) is constructed from the (known) GRN (regulator set R_i).
=> f is a Hill function with P and Q in numerator and P, Q and R in denominator.

Parameters globally shared across genes. Set to achieve target steady states.

$$X = (P \lor Q) \land \neg(R)$$

$$\downarrow$$

$$\frac{d[X]}{dt} = m \left(\frac{[P] + [Q] + [P][Q]}{1 + [P] + [Q] + [R] + [P][Q]} - l_x[X] + [P][R] + [Q][R] + [P][Q][R]} \right)$$

- What is a Gene Regulatory Network?
- Datasets: 400 Simulated and 5 Real sc-data
 - Synthetic, Curated (synthetic) and Real Single-cell data
 - BoolODE
- Methods: 12 Different Algorithms for GRN Inference
 - Random Forest
 - ODE and Regression
 - Correlation / Mutual Information / Causality
- Benchmarking Results

Prediction-based Algorithms

Algorithms based on predicting or modeling gene expression based on other gene profiles.

- GENIE3 (Random Forest)
- GRNBOOST2 (Random Forest)
- SCODE (ODE + Regression)
- SINCERITIES (Sparse Regression)
- GRISLI (ODE + Regression)

	Properties					
	Calegory	Add. inputs	ineorde	Directed	Gigned?	
PIDC	МІ		×	×	×	
GENIE3	RF	-	×	1	×	
GRNBOOST2	RF	-	×	1	X	
SCODE	ODE + Reg	ODE parameters	1	1	1	
PPCOR	Corr	-	×	×	1	
SINCERITIES	Reg	-	1	1	1	
SCRIBE	MI	Type of RDI	1	1	×	
SINGE	GC	Regression parameters	1	1	×	
LEAP	Corr	Lag	1	1	×	
GRISLI	ODE + Reg	Regression parameters	1	1	×	
GRNVBEM	Reg	-	1	1	1	
SCNS	Bool	Boolean model parameters	1	1	~	
		Low/Poor			Hi	

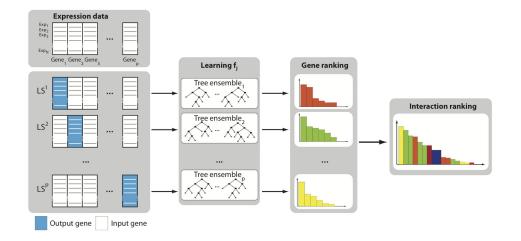
Fig. 6 | Summary of properties of GRN inference algorithms a

GENIE3 (Random Forest)

Idea (for Genes j = 1 to p)

 Generate the learning sample of input-output pairs for gene j:

$$LS^{j} = \{(\mathbf{x}_{k}^{-j}, x_{k}^{j}), k = 1, \dots, N\}.$$



Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P (2010) Inferring Regulatory Networks from Expression Data Using Tree-Based Methods. PLoS ONE 5(9): e12776.

GENIE3 (for "GEne Network Inference with Ensemble of trees")

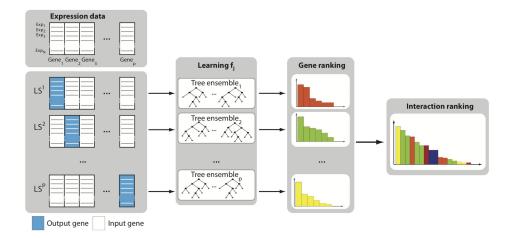
GENIE3 (Random Forest)

Idea (for Genes j = 1 to p)

 Generate the learning sample of input-output pairs for gene j:

 $LS^{j} = \{(\mathbf{x}_{k}^{-j}, x_{k}^{j}), k = 1, \dots, N\}.$

Use feature selection technique on
 LSⁱ to get confidence intervals w_{i,i}



Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P (2010) Inferring Regulatory Networks from Expression Data Using Tree-Based Methods. PLoS ONE 5(9): e12776.

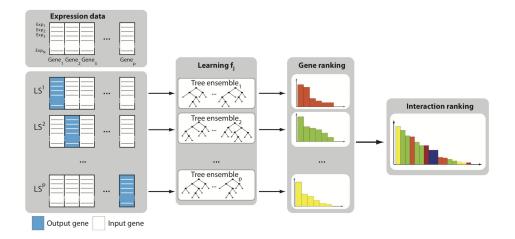
GENIE3 (Random Forest)

Idea (for Genes j = 1 to p)

 Generate the learning sample of input-output pairs for gene j:

 $LS^{j} = \{(\mathbf{x}_{k}^{-j}, x_{k}^{j}), k = 1, \dots, N\}.$

- ➢ Use feature selection technique on LSⁱ to get confidence intervals $w_{i,i}$
- Aggregate the *p* individual gene
 rankings to get global rankings



Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P (2010) Inferring Regulatory Networks from Expression Data Using Tree-Based Methods. PLoS ONE 5(9): e12776.

ODE+ Regression

TF expression dynamics throughout differentiation with linear ordinary differentiation equations (ODEs) :

dx = **A**xdt

where x is a vector of length G (G is the number of TFs) that denotes the expression of TFs and **A** corresponds to a square matrix with dimensions equal to G that denotes the regulatory network among TFs.

- Infer TF regulatory network by optimizing A such that the ODE can successfully describe the observed expression data at a time point.
- Pseudotime data also required as input.

Matsumoto H, Kiryu H, Furusawa C, Ko MSH, Ko SBH, Gouda N, Hayashi T, Nikaido I. SCODE: an efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation. Bioinformatics. 2017

- What is a Gene Regulatory Network?
- Datasets: 400 Simulated and 5 Real sc-data
 - Synthetic, Curated (synthetic) and Real Single-cell data
 - BoolODE
- Methods: 12 Different Algorithms for GRN Inference
 - Random Forest
 - ODE and Regression
 - Correlation / Mutual Information / Causality
- Benchmarking Results

Correlation / Info. Theory Algorithms

Algorithms based on measuring amount of information one gene provides of another gene.

- PIDC (Mutual Information)
- PPCOR (Correlation)
- SCRIBE (Mutual Information)
- SINGE (Granger Causality)
- LEAP (Correlation)

	4	auts	Ne	ed.	a .	
	Category	Addi imputs	Time order	Directed	Signed	
PIDC	МІ	-	×	×	X	
GENIE3	RF	-	X	1	X	
GRNBOOST2	RF	-	×	1	X	
SCODE	ODE + Reg	ODE parameters	1	1	1	
PPCOR	Corr	-	×	×	1	
SINCERITIES	Reg	-	1	1	1	
SCRIBE	м	Type of RDI	1	1	×	
SINGE	GC	Regression parameters	1	1	X	
LEAP	Corr	Lag	1	1	×	
GRISLI	ODE + Reg	Regression parameters	1	1	×	
GRNVBEM	Reg	-	1	1	1	
SCNS	Bool	Boolean model parameters	1	~	~	
		Low/Por	or		ł	

Properties

Fig. 6 | Summary of properties of GRN inference algorithms a

Partial Correlation

- Degree of association between two random variables, with the effect of a set of controlling random variables removed.

$$ho_{XY\cdot\mathbf{Z}}=rac{
ho_{XY\cdot\mathbf{Z}\setminus\{Z_0\}}-
ho_{XZ_0}\cdot\mathbf{z}\setminus\{Z_0\}
ho_{Z_0Y\cdot\mathbf{Z}\setminus\{Z_0\}}}{\sqrt{1-
ho_{XZ_0\cdot\mathbf{Z}\setminus\{Z_0\}}^2}\sqrt{1-
ho_{Z_0Y\cdot\mathbf{Z}\setminus\{Z_0\}}^2}}$$

* Kim, S. ppcor: An R package for a fast calculation to semi-partial correlation coefficients. Commun. Stat. Appl. Methods 22, 665–674 (2015).

Partial Correlation

- Degree of association between two random variables, with the effect of a set of controlling random variables removed.

Example: Variables X, Y, Z

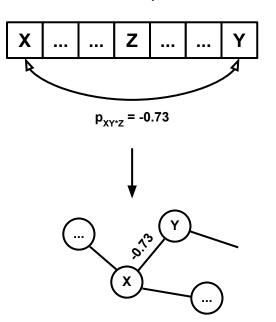
(a) p_{XY*Z} = p_{XY}
(b) p_{XY*Z} != p_{XY}
(c) p_{XY*Z} != p_{XY}

> * Kim, S. ppcor: An R package for a fast calculation to semi-partial correlation coefficients. Commun. Stat. Appl. Methods 22, 665–674 (2015).

PPCOR Algorithm for GRNs:

1. Calculate p_{XY*Z} for all pairs of genes X and Y, removing the effects of all other genes Z.

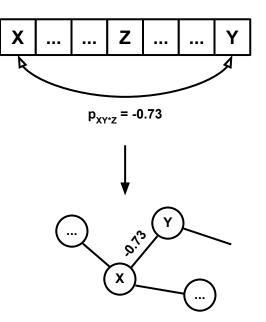
2. Use coefficients p_{XY*Z} as interaction weights in the GRN. Sign = Activation / Inhibition.



sc RNA-Seq data

PPCOR Algorithm Properties:

- Does not rely on pseudo-time.
- Undirected GRN graph.
- Signed GRN graph.



Mutual Information

$$H(X) = -\sum_{x \in X} p(x) \log p(x)$$

- Entropy H(X): Degree of uncertainty in X

Mutual Information

- Entropy H(X): Degree of uncertainty in X
- Mut. Information I(X, Y): Amount of information that X provides about Y

$$H(X) = -\sum_{x \in X} p(x) \log p(x)$$

$$I(X;Y) = \sum_{x \in X} \sum_{y \in Y} p(x,y) \log\left(\frac{p(x,y)}{p(x)p(y)}\right)$$
$$= H(X) + H(Y) - H(X,Y)$$

Mutual Information

- Entropy H(X): Degree of uncertainty in X

- Mut. Information I(X, Y): Amount of information that X provides about Y

- PID (Partial Inf. Decomp.) I(Z; X, Y): How much information X, Y provide about Z.

$$H(X) = -\sum_{x \in X} p(x) \log p(x)$$

$$I(X;Y) = \sum_{x \in X} \sum_{y \in Y} p(x,y) \log\left(\frac{p(x,y)}{p(x)p(y)}\right)$$
$$= H(X) + H(Y) - H(X,Y)$$

$$\begin{split} I(X; X, Y) &= \text{Synergy}(Z; X, Y) + \text{Unique}_Y(Z; X) \\ &+ \text{Unique}_X(Z; Y) + \text{Redundancy}(Z; X, Y) \;, \end{split}$$

Mutual Information

- Entropy H(X): Degree of uncertainty in X

- Mut. Information I(X, Y): Amount of information that X provides about Y

- PID (Partial Inf. Decomp.) I(Z; X, Y): How much information X, Y provide about Z.

- There is a relationship between I(X, Z) and components of the PID.

$$H(X) = -\sum_{x \in X} p(x) \log p(x)$$

$$I(X;Y) = \sum_{x \in X} \sum_{y \in Y} p(x,y) \log\left(\frac{p(x,y)}{p(x)p(y)}\right)$$
$$= H(X) + H(Y) - H(X,Y)$$

$$\begin{split} I(X; X, Y) &= \text{Synergy}(Z; X, Y) + \text{Unique}_Y(Z; X) \\ &+ \text{Unique}_X(Z; Y) + \text{Redundancy}(Z; X, Y) \;, \end{split}$$

 $I(X;Z) = \text{Unique}_{Y}(Z;X) + \text{Redundancy}(Z;X,Y)$

The PUC (Prop. Unique Contribution):

- Computed between two genes X and Y as the sum of the ratio Unique_z(X; Y) / I(X; Y) for every other gene Z in a network.

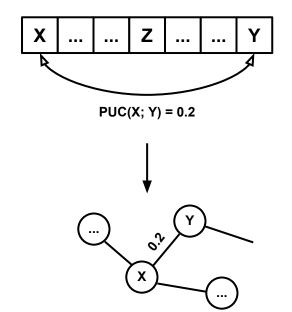
$$u_{X,Y} = \sum_{Z \in S \smallsetminus \{X,Y\}} \frac{\text{Unique}_Z(X;Y)}{I(X;Y)} + \sum_{Z \in S \smallsetminus \{X,Y\}} \frac{\text{Unique}_Z(Y;X)}{I(X;Y)}$$

- The mean proportion of MI between two genes X and Y that is accounted for by their unique information only (information from other genes has been removed).

^{*} Chan, T. E., Stumpf, M. P. H. & Babtie, A. C. Gene regulatory network inference from single-cell data using multivariate information measures. Cell Syst. 5, 251–267 (2017).

PIDC Algorithm for GRNs:

- 1. Calculate PUC(X; Y) for all pairs of genes X and
- Y, removing the effects of all other genes Z.
- 2. Calculate per-gene thresholds to keep only
- the most significant PUC's.
- 3. Use PUC(X; Y) as the interaction strength between genes X and Y.



sc RNA-Seq data

PIDC Algorithm for GRNs:

- Does not rely on pseudo-time.
- Undirected GRN graph.
- Unsigned GRN graph.

Comment from authors: Fewer false positives (indirect connections) compared to PPCOR

Х Ζ Υ PUC(X; Y) = 0.20.2

sc RNA-Seq data

Pseudo-time ordering

- Pre-processing step
- In: Gene-cell count matrix
- Out: Gene-cell count matrix
- sorted such that cell i "precedes" j, i < j
- LEAP internally uses Monocle for this

* Specht, A. T. & Li, J. LEAP: constructing gene co-expression networks for single-cell RNA-sequencing data using pseudotime ordering. Bioinformatics 33, 764–766 (2017).

Genes

Pseudo-time ordering

- Pre-processing step
- In: Gene-cell count matrix
- Out: Gene-cell count matrix
- sorted such that cell i "precedes" j, i < j
- LEAP internally uses Monocle for this

	0.3	 	1.4	 	7.8
Cells	0.5	 	1.8	 	4.2
)	0.1	 	0.2	 	4.0

* Specht, A. T. & Li, J. LEAP: constructing gene co-expression networks for single-cell RNA-sequencing data using pseudotime ordering. Bioinformatics 33, 764–766 (2017).

Pseudo-time ordering

- Pre-processing step
- In: Gene-cell count matrix
- Out: Gene-cell count matrix sorted such that cell i "precedes" j, i < j
- LEAP internally uses Monocle for this

	0.3			1.4			7.8	
Cells	0.5			1.8			4.2	
	0.1			0.2			4.0	
	Monocle							
				♦	Mono	cle		
1	0.1			0.2	Mono	cle 	4.0	
"Time"	0.1 0.3			♥ 0.2 1.4	Mono 		4.0 7.8	

Genes

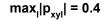
* Specht, A. T. & Li, J. LEAP: constructing gene co-expression networks for single-cell RNA-sequencing data using pseudotime ordering. Bioinformatics 33, 764–766 (2017).

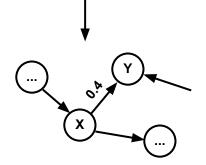
Lag-based correlation testing

- Tests for correlation between gene i and j, but over windows of pseudo-time delay.

- Time series for gene i: X_{i, 1}, ..., X_{i, s}
- Time series for lagged gene j: X_{i, l+1}, ..., X_{i, l+s}
- Interaction strength = max₁ |p_{ij1}|



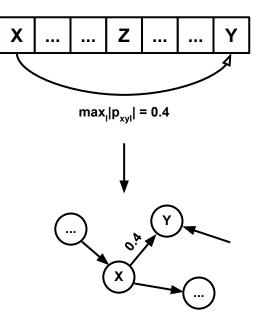




LEAP Algorithm for GRNs:

- Relies on pseudo-time.
- Directed GRN graph.
- Unsigned GRN graph.

sc RNA-Seq data



- What is a Gene Regulatory Network?
- Datasets: 400 Simulated and 5 Real sc-data
 - Synthetic, Curated (synthetic) and Real Single-cell data
 - BoolODE
- Methods: 12 Different Algorithms for GRN Inference
 - Random Forest
 - ODE and Regression
 - Correlation / Mutual Information / Causality
- Benchmarking Results

- Each algorithm tested on each of the six types of synthetic datasets (Linear, Cycle, Long Linear, Bifurc., Bicurfc. Converg., Trifurc.).
- Test the ability to infer edges in the GRN.

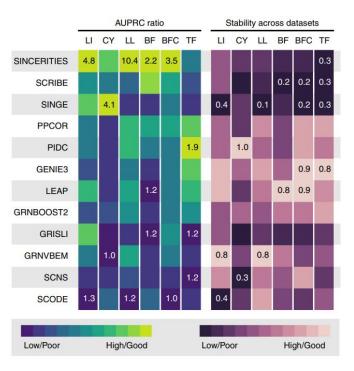


Fig. 2 | Summary of results for datasets from synthetic networks. The first

- Each algorithm tested on each of the six types of synthetic datasets (Linear, Cycle, Long Linear, Bifurc., Bicurfc. Converg., Trifurc.).
- Test the ability to infer edges in the GRN.
- AUPRC Ratio: Divide area under precisionrecall curve by that of random predictor.
- Stability: For all datasets of a single type, compare the Top-K-edges (Jaccard Index).

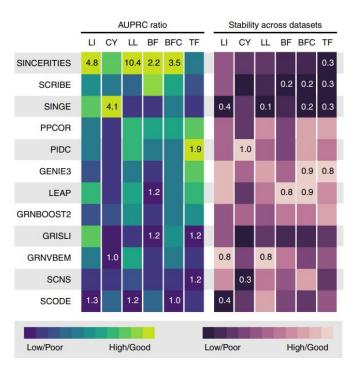


Fig. 2 | Summary of results for datasets from synthetic networks. The first

 Not shown: Varying the number of cells (100 -5,000) had no significant effect on GENIE3, GRNVBEM, LEAP, SCNS and SCODE.

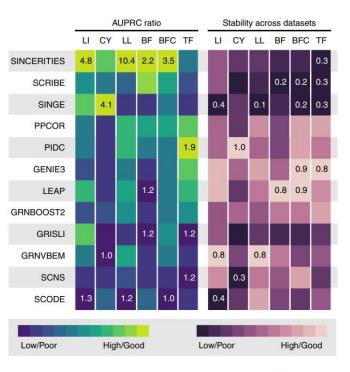


Fig. 2 | Summary of results for datasets from synthetic networks. The first

- Each algorithm tested on each of the four curated GRN datasets.
- Best algorithms on synthetic GRNs: SINCERITIES, SCRIBE and SINGE Close to random perf. on curated GRNs.
- Possible causes:
- Denser sub-networks.

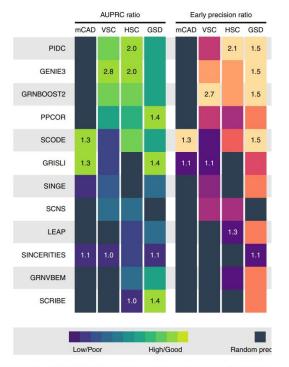


Fig. 4 | Summary of results for ten datasets without dropouts from curated models. Rc

- Not shown: Most methods had significant drops in AUPRC ratio with either 50% or 70% dropout.
- The four methods not affected by dropout: GRNVBEM, LEAP, SCRIBE and SINCERITIES Had worse than random AUPRC on on the mCAD and VSC datasets.

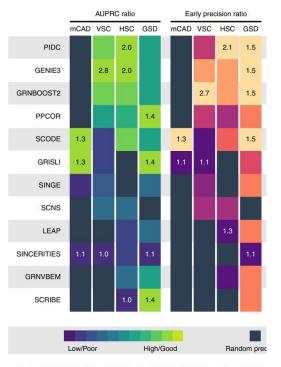


Fig. 4 | Summary of results for ten datasets without dropouts from curated models. Ro

- Pseudo-time ordered algorithms are much worse on real sc RNA-Seq data

E.g. SCODE, SINCERITIES

- Possible causes: Noise pseudo-time.

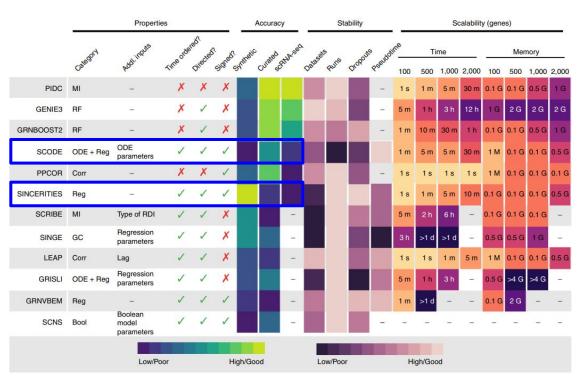


Fig. 6 | Summary of properties of GRN inference algorithms and results obtained from BEELINE. Each row corresponds to one of the algorithms included

Recommendation:

- PIDC, GENIE3 and GRNBoost2.
- GENIE3 and PIDC had better stability.
- GRNBoost2 faster than GENIE3.

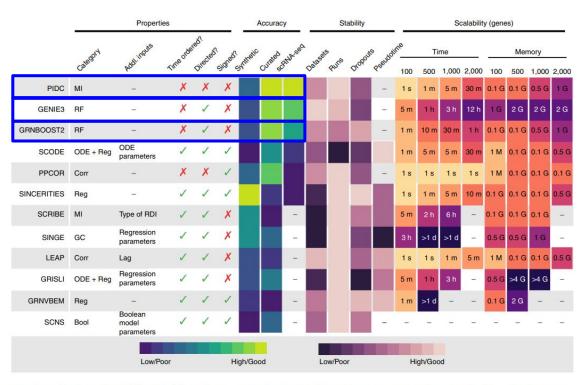


Fig. 6 | Summary of properties of GRN inference algorithms and results obtained from BEELINE. Each row corresponds to one of the algorithms included

- Surprisingly, classical algorithms designed for bulk transcriptomics data (GENIE3, PPCOR) outperformed specialized algorithms such as LEAP or SINCERITIES.
- Is Inference (GRN) based on already inferred data (pseudo-time) the culprit?
- What other data could be incorporated to increase performance?
- Do we believe in the BoolODE-simulated single-cell datasets?