
SoftMAC – Flexible Wireless Research Platform

Michael Neufeld, Jeff Fifield, Christian Doerr, Anmol Shethand Dirk Grunwald
Dept. of Computer Science

University of Colorado, Boulder
Boulder, CO 80309-0430

November 4, 2005

Abstract

Discontent with the traditional network protocol stack ar-
chitecture has been steadily increasing as new network tech-
nologies and applications demand a greater degree of flexi-
bility and “end to end” information than a strictly layered
structure permits.Software-defined radio(SDR) systems
have prompted some rethinking of the network stack, and
schemes have been presented that attempt to take advan-
tage of the opportunities afforded by these flexible radio
systems. However, evaluation of these schemes has largely
taken place only in simulation or on small testbeds. In or-
der to seriously evaluate the utility and efficacy of architec-
tures and heuristics that take advantage of SDR systems it
is essential to construct and test these systems “in the wild,”
i.e. in environments outside of simulators and the labora-
tory. Unfortunately the SDR platforms currently available
are not generally suitable for such deployments.

We argue that network researchers should begin to de-
sign for software defined radio systems and move from sim-
ulation to prototypes. To this end, we have developed a
software system that allows researchers to use inexpensive,
commodity wireless networking cards to experiment with
new MAC layer protocols. Individual radios still use the
common 802.11a/b/g RF modulations, but by judicious con-
trol of the interface we are able to completely supplant the
standard 802.11 MAC. On top of this radio subsystem, we
have created a software architecture that permits researchers
to easily construct and deploy experimental dynamic MAC
layers on systems running Linux. We argue by example that
such simple software defined radios provide robust, capable
platforms for research. Using such inexpensive tools will
allow wireless network research to address a number of the
opportunities of software defined radio.

1 Introduction

Computer systems researchers have a rich history of exper-
imenting with wireless networks. Alohanet was one of the
earliest wireless data networks, and the design of the col-

lision avoidance protocols for that network influenced the
design of Ethernet. Contributions by researchers interested
in packet radiohave greatly influenced protocol designs of
existing products. For example, the RTS/CTS mechanism
used in the 802.11 networking standard was influenced by
the MACA protocol proposed by Phil Karn [1].

Recently, most of the experimentation in wireless net-
working has used commodity components such as 802.11b
networking cards. This has occurred for a number of reasons
– these commodity networking cards are inexpensive, do not
require a license to operate, and offer good performance.
Furthermore there are a wealth of interesting computer sys-
tems problems facing wireless networking that occur above
the physical and MAC layers. Using these commodity cards
allows researchers to build systems to investigate these prob-
lems.

However, recent research has shown that there is still
“plenty of room at the bottom”. While 802.11 has demon-
strated sufficient utility for widespread adoption, there are
still many interesting problems to solve at the MAC layer
and below. For example, the 802.11 MAC protocol suffers
from many weaknesses, opening it to attacks limiting ser-
vice [2] or violating privacy. Protocols designed to over-
come these security problems have also been found to have
security holes [3]. Even new MAC protocols such as 802.16,
designed with the benefit of hindsight, appear to have mul-
tiple security problems [4]. Likewise, there has been in-
creased interest in MAC and PHY layers that either reduce
power or contention for sensor networks and fordelay tol-
erant networks. The 802.11 MAC layer is poorly suited for
these novel network architectures. Most researchers in these
domains limit their exploration to simulation. Sensor net-
working researchers do often “roll their own” MAC layers
using simple radios interfaces and simplified protocols [5].
However, most of these protocol implementations and un-
derlying network hardware platforms operate under power
and bitrate constraints suitable for sensor networks. These
constraints make them unsuited for experimentation in other
interesting domains,e.g.mesh and community networking,
long-distance networks and networks involving directional
antennas.

1

At the same time, there has been a growing interest in
cognitiveor software defined radios[6, 7, 8], both from the
perspective of the technology needed to make such systems
a reality and from the possible channel management enabled
by such systems. Software defined radios are key to provid-
ing the “spectrum agility” that would allow the current fixed
allocation of spectrum to evolve to a more dynamic real-
time allocation policy. Spectrum agility will require con-
siderable coordination with the applications and operating
systems of devices using particular frequencies – there are
so many possible system configurations that managing such
resources is very much an open problem. As SDR becomes
a more common technology, protocols and behavioral norms
will be needed to allow the use of new bandwidth without
interfering with legacy services; no such systems currently
exist.

We feel there is a compelling need for asoftware defined
radioplatform that is inexpensive, easy to use and could pro-
vide at least partial control over the MAC and PHY layers.
Although the National Science Foundation is funding re-
search programs charged with developing software defined
radios, these systems are still expensive (typically costing
$1,000-$10,000 for simple units and increasing to $100,000
for more complex systems) and relatively bulky when com-
pared with the laptops and PDAs often used in wireless and
mobile networking research. This greatly limits their util-
ity when attempting to conduct large scale or mobile wire-
lesssystems levelexperiments. Furthermore, many interest-
ing systems may still be constructed with a lesser degree of
MAC and PHY flexibility than is afforded by these high-
end platforms. Our own motivation was the need to develop
MAC, link and routing protocols for wireless networks that
involve directionality, either through the use of fixed direc-
tional antennas or through dynamic beam-steering antennas.
We needed the ability to modify the standard 802.11 MAC
protocol and to use multiple MAC protocols simultaneously.

We have developed the SOFTMAC system to fill
this need. The SOFTMAC system uses a commodity
802.11a/b/g networking card with a chipset manufactured
by the Atheros Corporation to build a software radio with
predefined physical layers but a flexible MAC layer. In-
ternally, the Atheros chipset provides considerable flexibil-
ity over the format of the transmitted packets, though this
flexibility is not generally exposed by network drivers. By
reverse-engineering many of those controls using a combi-
nation of open-source software references and “black box”
probing and analysis, we have developed a driver that allows
extensive control over the MAC layer while using any of the
waveforms defined by the underlying 802.11b, 802.11g and
802.11a physical layers. We have also developed a software
control system that allows us to run precise experiments,
allowing us to address many of the “systems level” issues
facing researchers interested in novel wireless networking
applications.

In this paper, we discuss the highlights of our fully func-
tional wireless networking experimentation system and how
we are using it to solve problems when applying 802.11 net-
works [9, 10] to long-distance mesh networking. Unlike
the work of Rao and Stocia [10] and others, we can avoid
working around many of the problems of the 802.11 MAC,
and can directly correct the performance problems that oc-
cur when applying that MAC to novel applications.

This software package has already been distributed to
two companies and one additional university.

2 Implementation and Design of the
SOFTMAC System

SOFTMAC provides precise control over the content and
timing of wireless transmission and reception. Because the
SOFTMAC system was implemented by overriding an im-
plementation of the 802.11 MAC layer provided by a com-
mercial family of networking cards, it is important to under-
stand the key attributes of the 802.11 MAC and PHY layers
and how they can help and hinder this overall goal:a) The
PHY and MAC layers have checksums, and any failure in
those checksums causes the message to be ignored;b) The
MAC protocol is controlled by a series of precise timing in-
tervals;c) Contention is handled by a combination ofcar-
rier sensingandcollision avoidanceusing specified trans-
mission durations contained in message headers; andd) the
PLCP headers constitute a fixed overhead on each packet.
At high data rate, this is about 15% of the transmission time
of a packet.

Commodity 802.11 hardware typically divides up the
functionality of the 802.11 MAC between the hard-
ware/firmware on the card and the driver running on the
host system. This means that the flexibility of such sys-
tems varies greatly between manufacturers. The SOFTMAC
system relies on features of the chipsets designed by the
Atheros Corporation. In particular, we have used the
Atheros AR5212 chipsets and the open-sourceMadwifi
driver [11]. Atheros uses a “hardware abstraction layer” or
HAL to provide a common hardware interface for operating
systems. The HAL is written in the machine code of the
computer hosting the wireless card, and abstracts common
functionality across different individual chipsets. Although
the HAL is distributed in binary-only format and not exten-
sively documented, there have been attempts to produce an
“open-source” HAL. We have only used these open-source
references while building SOFTMAC.

Overall, there were six primary tasks we needed to per-
form in order to implement SOFTMAC:

1. Override 802.11 MPDU frame format

2. Eliminate automatic ACK and retransmission

3. Eliminate RTS/CTS exchange

4. Eliminate virtual carrier sense (NAV)

5. Control PHY Clear Channel Assessment (CCA)

6. Control transmission backoff

The first three were done by operating the card in “Mon-
itor Mode”; unlike many other cards, the Atheros chipset
allows packets to be transmitted in monitor mode. By mark-
ing a packet as being a “retry” packet, changes normally
made by the hardware are avoided. In monitor mode, the
802.11 NAV field is only applied when the destination ad-
dress matches the actual MAC address; changing the MAC
address or using an alternate format avoids throttling due to
NAV. Measurements using an Agilent 4438C signal gener-
ator as a calibrated noise source shows that we can force
transmission in monitor mode; furthermore, we can cali-
brate the local noise floor using a channel condition assess-
ment mechanism provided by the Atheros chipset. Lastly,
transmission backoff can be controlled by setting the spe-
cific contention register settings.

3 Evaluation and Microbenchmarks
For SoftMac

In order to evaluate the performance and overhead of
SOFTMAC, we developed a series of micro-benchmarks to
measure important attributes of the system. These bench-
marks were evaluated on a testbed of Shuttle SS51 small
form-factor PC’s equipped with 2.4 Ghz Celeron processors
and a DLINK DWL-AG530 PCI card with external antenna.
The DLINK cards use the Atheros AR5212 chipset.

An important performance characteristic is the rate at
which packets may be sent and the delay between packets.
By utilizing the high resolution timer built into the Atheros
hardware we determined that it is possible to send messages
every 91±1 µseconds at the 95% confidence level.

Another important characteristic is the “turn-around”
time for a received packet – this is the time between the
completed reception of a packet and the ability to respond
to information contained in that packet. This is a critical
time constant for protocols that rely on an ACK mechanism,
like the 802.11 protocol. We directly measured this time by
having one station send a “request” packet that would so-
licit an immediate reply from a second station. A third sta-
tion nearby monitored the traffic produced by both of these
stations. The Atheros hardware timestamps each arriving
packet with its own clock. By observing the differences
of arrival times of each packet on the monitor machine and
subtracting the time required to transmit the packet we ob-
tained the interval between the end of the request packet
and the start of the reply packet,i.e. the turnaround time.
We used a data payload of 48 bytes sent at 1 Mb/s. Com-
bined with the short preamble and four byte 802.11 MAC

Observed Mean Inter-Event Spacing (in ms)
Target Mean 95% Conf. Int.
50 ms 49.96 ±0.12
1 ms 1.03 ±0.082

0.1 ms 0.091 ±0.001

Table 1: Inter-Event Timing Accuracy

CRC this results in a transmission time of 512 microsec-
onds. Over 100 trials we measured a mean turnaround time
of 166µseconds±1 µseconds at the 95% confidence level.
As mentioned previously, by using the same destination ad-
dress format as the 802.11 MAC, it’s possible to have the
hardware generate an ACK within 10µseconds; however,
that ACK is only generated when the standard CRC matches
the computed checksum, and is only suitable for protocols
that don’t rely on more advanced error correction.

It is important that the SOFTMAC system provides cred-
ible system-level performance. We implemented a sim-
ple MAC protocol that we called “Ethernet-over-wireless”
(EoW); we encapsulated standard Ethernet packets as the
PDSU payload. In many ways, this MAC protocol is sim-
ilar to the 802.11 MAC, but it only uses two addresses
(source & destination), has no NAV mechanism, does not
use RTS/CTS and does not use an ACK mechanism. That
protocol had essentially the same performance (throughput,
latency) as the standard 802.11 protocol as implemented by
the standard drivers in our test environment.

By putting the 802.11 cards into “monitor mode”, it is
possible that the interrupt load would increase dramatically.
We used the Tracing Tools (LTT) to measure the number of
interrupts per second as a function of the number of frames
received and derived a linear regression model with coeffi-
cient of 1.2 interrupts per frame (with reasonably tight con-
fidence bounds). The normal Linux timer interrupt causes
1000 interrupts per second, indicating that such an interrupt
load is considered acceptable; we never saw more than 1020
interrupts per second for the network card, and felt that the
low interrupt load was not worth moving to a polling driver.
We also wanted to find the repeatability of remotely sched-
uled events (e.g. transmitting packets at scheduled times);
any variance in the driver or scheduling issues in the op-
erating system could limit the effectiveness of these events
for timing sensitive experiments. We specified a 50 ms,
1 ms and 100µs inter-event spacing. In this configuration,
a control packet is scheduled every 3 seconds that resets the
SOFTMAC device driver’s time base. Following the control
packet, data packets carrying the desired timing informa-
tion are sent to the device at the specified intervals. This
combination of control and data packets were measured for
50 trials. The resulting mean and 95% confidence interval
for each inter-event spacing is shown in Table 1; there is
little variance in the inter-packet timing. The low variance

for inter-packet timing implies that protocols could expect
to rely on 100µsecond inter-packet intervals – for exam-
ple, the using SOFTMAC to build a “well known interfering
source” could rely on tight bounds on inter-packet transmis-
sion times.

4 Using Multiple MAC Layers

In order to demonstrate the utility of SOFTMAC, we wanted
to implement two MAC protocols that were distinctly dif-
ferent than the standard 802.11 MAC and that highlighted
some aspect of the SOFTMAC system. We developed two
simple MAC protocols; the first is a time-division multiplex-
ing MAC with fixed duration slot times. The second is a
CSMA/CA MAC protocol that used Reed-Solomon coding
to reduce the bit-error rate at the expense of extra coding
and CPU overhead. We also developed MULTI MAC, a sys-
tem that lets researchers combine multiple MAC implemen-
tations. MULTI MAC acts as a wrapper to allow researchers
to experiment with “cognitive radio” algorithms – it allows
multiple lower-layer MAC protocols to be used simultane-
ously.

Our goal in implementing and describing these MAC
protocols is to demonstrate the degree of control and the
benefit that networking researchers can achieve from us-
ing SOFTMAC. Most current wireless networking research
uses simulations; we think the community should start to
insist on prototypes using systems such as SOFTMAC.

4.1 TDMA MAC Protocol

The 802.11 MAC provides media access using a collision-
avoidance protocol that combines precise timing intervals
and media sensing. There are a number of other MAC pro-
tocols are more efficient in certain scenarios; for example,
the 802.16 [12] protocol uses a time-division multiplexing
(TDMA) protocol where an access point downloads pack-
ets to individual stations using precise time slots. Variants
of 802.16 can combine this with multiple channels to pro-
vide a continuous down-stream data link with an up-stream
data-stream that may use another MAC protocol.

TDMA MAC protocols have the benefit of reducing
packet scheduling variance and can be useful for multimedia
applications; they can also be useful for “long haul” net-
works where carrier sensing may cause undesirable delays
(which is one of our applications). To demonstrate the flex-
ibility of the SOFTMAC system, we implemented a simple
TDMA-based protocol. The protocol assigns fixed slot peri-
ods to individual stations; stations can only transmit during
their slot period. Currently, the slot periods are assigned
explicitly and there is no negotiation. The slot period is ad-
justable and the protocol is configurable such that stations
can transmit either a single packet during their period or

0 500 1000 1500

0
50

00
10

00
0

15
00

0

Time Per Packet For TDMA MAC on Shuttle SS51

UDP Payload In Bytes

T
im

e,
 In

 M
ic

ro
se

co
nd

s

5.5 mb/s − 4968.9 + b * 0.07
 11 mb/s − 4984.1 + b * 0.03
 24 mb/s − 3016.8 + b * 1.69
 54 mb/s − 2551.5 + b * 1.32

Values for 1 Mb/s rate
Bytes 64 300 500 505 510
Time 5079.0 5515.0 6547.8 7079.5 7064.2

Values for 2 Mb/s rate
Bytes 64 300 700 1000
Time 4972.33 5081.7 5124.1 5479.0

Figure 1: Regression model and means for time per packet
using the “Ethernet over Wireless” MAC protocol on a Shut-
tle SS51 system with a 2.4 Ghz Celeron processor using the
“TDMA” MAC and a 5 millisecond slot time. The data for
the 1 Mb/s and 2 Mb/s rates are broken out because not all
message sizes could be sent at those datarates with the spec-
ified slot time.

multiple packets. Timing for the slot period is done using a
simple timing negotiation protocol using the precise times-
tamp that can be added to packets using the Atheros chipset.

The TDMA protocol was implemented as a kernel driver
using the SOFTMAC interface. This was done to provide
precise scheduling control of when packets could be trans-
mitted.

Figure 1 shows the time-per-packet when using the
TDMA protocol to communicate between two Shuttle SS51
computers using the same benchmark tools described ear-
lier. The results are displayed differently for the different
physical waveforms. The results for the 5.5, 11, 24 and
54 Mb/s waveforms are shown in the figure; the results for
the the 1 and 2 Mb/s waveforms are shown in the table.

The first thing to note is that the time-per-packet is al-
most a constant 5 ms for the higher-speed waveforms, inde-
pendent of the payload size. Regression models are shown
for the higher speed waveforms, but the models are only
very accurate for the 5.5 and 11 Mb/s waveforms. The con-
stant time per packet is a consequence of using a TDMA
protocol that allows a single message per slot time. The time
is slightly lower for the higher speed protocols – this occurs
because the measurement records the round-trip time for a

packet exchange between two nodes. For small message
sizes, the higher speed protocols can send a message at the
end of the timeslot of one node and have the second node fin-
ish replying near the beginning of its own time slot; thus, the
elapsed time is less than10 ms for an exchange. For the 5.5
and 11 Mb/s encoding, the transmission duration is longer,
and the total time is closer to the total10 ms time alloca-
tion. The 1 and 2 Mb/s waveforms are unable to transmit all
message sizes in less than 5 ms, and the measurements that
could be made for those waveforms are shown in the tables
below the previous graph. As the packet length approaches
500 bytes for the 1mb/s rate, the different stations begin to
lose their timeslots because they are still receiving messages
from the other system when their time. This increases the
overall packet delay as the system saturates. We found the
1mb/s waveform started to exhibit increased response time
after≈500 byte messages and the 2mb/s waveform had sim-
ilar growth for≈1000 byte messages, as predicted by a re-
gression model of the time to transmit messages at different
rates.

4.2 Adaptive Reed-Solomon MAC Protocol

To further demonstrate the feasibility of developing MAC
protocols using SOFTMAC we designed an adaptive Reed-
Solomon MAC which utilizes Reed-Solomon (RS) forward
error correction to detect and fix bit errors in the MAC
data payload. RS codes are a well known method of en-
coding data for protection against transmission errors. In
the RS MAC, the common (255,223) encoding scheme is
used. Because of the additional space and computational
overhead associated with RS encoding, the MAC is adap-
tive and only uses forward error correction if bit errors
are currently occurring. To simplify the development of
this and other SOFTMAC-based MAC’s, we augmented the
Click Modular Router with a set of SOFTMAC compo-
nents. This MAC was implemented as a Click application
using the SOFTMAC Click elements and a standard RS
software package. The CSMA/CA mechanism provided by
SOFTMAC was used for channel access.

The RS MAC operates in one of two modes; all outgo-
ing packets are RS encoded or all packets are sent unen-
coded. Since an endpoint cannot determine whether or not a
packet it transmitted was received without error, it must rely
on feedback from its peer to determine its current mode. A
simple algorithm with three configurable parameters gov-
erns the sending of these feedback packets. The parameters
are the sample periods, the error thresholde, and the no-
error thresholdc. Packets are observed over a sample period
of s packets. If an endpoint is receiving unencoded pack-
ets ande or more packets with errors are received during
a sample period, a packet is sent indicating that RS encod-
ing should be used. Similarly, if an endpoint is currently
receiving RS encoded packets andc or more packets are re-

Reed-Solomon MAC fors = 10, e = 2, c = 10

Recv Valid Recv RS Recv Corrections
R-S MAC 3859 3660 2971 23013

802.11 3845 1850 0 0

Figure 2: Packets received, Packets correctly received,
Reed-Solomon packets received and Number of Reed-
Solomon corrected bytes. Averages for 10 trials of 4000
packets each.

ceived without errors during the sample period, the MAC
sends a message telling its peer to stop encoding packets.
In unencoded packets, errors are detected using the CRC32
checksum that is computed and appended to the packet by
the Atheros card. In RS encoded packets, errors are detected
during the RS decoding process.

To test the functionality and performance of the adaptive
Reed-Solomon MAC, we performed an experiment where
two nodes try to send 1000 byte packets to each other at a
rate of 100 packets per second. To decrease the probability
of errors occurring in control frames relative to the probabil-
ity of errors occurring in data frames, a data rate of 1 Mb/s
was used for control information while data was sent at a
rate of 54 Mb/s. Nodes were placed far enough apart to in-
duce significant error when using the 54 Mb/s waveform.
The result of 10 trials are shown in figure 2. For each test,
2000 packets were sent by each node for a total of 4000
packets. It is obvious from the results that the adaptive RS
encoding scheme reduces the transmission error rate. On av-
erage, about 75% of packets were RS encoded, reducing the
number of packets dropped due to errors from greater than
50% to less than 10%. The results also suggest that most
errors occur in the 54 Mb/s payload portion of the packet
and not in the 1 Mb/s and 2 Mb/s PLCP header. Errors were
observed in more than half of the packets received and, as
stated earlier, the PLCP header (which cannot be disabled
in SOFTMAC) accounts for about 15% of the transmission
time of a large packet for high data rates.

5 Related Work

There are other projects designed to facilitate MAC layer ex-
perimentation. In particular, an increasing amount of work
is being done to construct Software Defined Radio platforms
[13, 14, 15]. While these platforms are more flexible than
SOFTMAC, they are also not “off the shelf” components,
and are furthermore heavier, more expensive, and require
more skill to assemble.

SOFTMAC bears some resemblance in functionality to
802.11 packet injection libraries [16]. However, the in-
tended purpose of such libraries is typically related to se-
curity aspects of 802.11 networks rather than attempting to

create new MAC protocols.
A specific project that attempts to override the default

behavior of 802.11 hardware in order to create a new MAC
layer is the 2-P/SynOp MAC [17], created as a part of the
Digital Gangetic Plains Project. However, this work at-
tempts to utilize 802.11 hardware for a specific MAC layer,
rather than creating a general purpose framework for en-
abling MAC layer experimentation.

The Madwifi Stripped[18] variant of theMadwifi [11]
driver created as part of the MIT Roofnet project [19] allows
802.11 packet injection from the Click Modular Router.
This driver is similar to SOFTMAC in that it affords a larger
degree of control over 802.11 packet content and transmis-
sion parameters, but its focus appears to be centered more on
directly enhancing 802.11-based networks rather than utiliz-
ing 802.11 hardware for broader MAC-layer experiments.

6 Implications of Cheap Software
Defined Radios

In this paper, we have described a software system that
lets networking researchers experiment with some aspects
of software defined radio. We demonstrated that tight con-
trol over the inexpensive radio platform is possible (via the
TDMA MAC), and that it can be used to implement features
decidedlynot implemented in standard wireless MAC pro-
tocols (via the Reed-Solomon MAC).

Although this platform is a pale imitation of a true soft-
ware defined radio, the price (≈ $70) for the network card
and the simple interface we have developed allows rapid
experimentation. These tools should enable wireless re-
searchers to validate their solutions in implementation.

In the future, we plan on augmenting the exist-
ing software to use more expensive (but more capa-
ble) purely software radios based on hybrid FPGA’s
that can deviate from the 802.11b/g PHY layers. The
current SOFTMAC system can be downloaded from
http://systems.cs.colorado.edu
/projects/softmac .

This work was funded by NSF NeTS Prowin award
#0435452 and #0435297 as well as an NSF RI award and
NSF CRI Award #0454404.

References
[1] Phil Karn. Maca—a new channel access method for

packet radio. InProceedings of 9th Amateur Radio Com-
puter Networking Conference, 1990. Also available at
http://www.ka9q.net/papers/maca.html .

[2] J. Bellardo and S. Savage. 802.11 denial-of-service attacks:
Real vulnerabilities and practical solutions. InProceedings
of USENIX Security Symposium, August 2003.

[3] Changhua He and John C. Mitchell. Analysis of the 802.11i
4-way handshake. InWiSe ’04: Proceedings of the 2004 ACM
workshop on Wireless security, pages 43–50. ACM Press,
2004.

[4] Derrick D. Boom. Denial of service vulnerabilities in
IEEE 802.16 networks. Master’s thesis, Naval Post-
graduate School, Monterey, CA, Sept 2004. Avail-
able as http://www.ieee802.org/16/tge/
contrib/C80216e-04_406.pdf .

[5] J.Polastre, J. Hill, and D. Culler. Versatile low power media
access for wireless sensor networks. InThe 2nd ACM Confer-
ence on Embedded Networked Sensor Systems (SenSys’04),
2004.

[6] Joe Mitola. The software radio architecture.IEEE Commu-
nications Magazine, 33(5):26–38, May 1995.

[7] David L. Tennenhouse and Vanu G. Bose. Spectrumware: A
software-oriented approach to wireless signal processing. In
Mobile Computing and Networking, pages 37–47, 1995.

[8] V. Bose, M. Ismert, M. Wellborn, and J. Guttag. Virtual ra-
dios. IEEE JSAC, 17(4):591–602, April 1999.

[9] Joseph Dunn, Michael Neufeld, Anmol Sheth, Dirk Grun-
wald, and John Bennett. A practical cross-layer mechanism
for fairness in 802.11 networks. InProceedings BROAD-
NETS 2004, pages 355–364, Oct 2004.

[10] Ananth Rao and Ion Stoica. An overlay MAC layer for
802.11 networks. InMobiSys ’05: Proceedings of the 3rd in-
ternational conference on Mobile systems, applications, and
services, pages 135–148, New York, NY, USA, 2005. ACM
Press.

[11] Madwifi. http://sourceforge.net/
projects/madwifi .

[12] Carl Eklund, Roger B. Marks, Kenneth L. Stanwood,
and Stanley Wang. IEEE standard 802.16: A techni-
cal overview of the wirelessman air interface for broad-
band wireless access.http://grouper.ieee.org/
groups/802/16/tutorial , Feb 2004.

[13] Gary Minden. Kansas university agile radio. (Private Com-
munication), Sept 2005.

[14] Matt Ettus and Eric Blossom. The gnu software radio. Infor-
mation athttp://www.ettus.com , April 2005.

[15] D. Raychaudhuriet al. Network centric cognitive radio plat-
form. Information athttp://www.winlab.rutgers.
edu/pub/docs/focus/Cognitive-Hw.html ,
2005.

[16] lorcon - Loss Of Radio CONnectivity.
http://www.felloffthebackofatruck.com/
svn/tx-80211 .

[17] Bhaskaran Raman and Kameswari Chebrolu. Revisiting
MAC design for an 802.11-based mesh network. InSecond
Workshop on Hot Topics in Networks (HOTNETS-III), 2004.

[18] Madwifi stripped.http://www.pdos.lcs.mit.edu/
˜jbicket/madwifi.stripped .

[19] Roofnet.http://www.pdos.lcs.mit.edu/roofnet .

