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Figure 1. Top: the original picture. Bottom: the image reconstructed by our approach, which uses as only input the output of a standard

local description software (position and shape of a number of ”regions of interest” and for each of them a SIFT descriptor or the like).

Abstract

This paper shows that an image can be approximately re-

constructed based on the output of a blackbox local descrip-

tion software such as those classically used for image in-

dexing. Our approach consists first in using an off-the-shelf

image database to find patches that are visually similar to

each region of interest of the unknown input image, accord-

ing to associated local descriptors. These patches are then

warped into input image domain according to interest re-

gion geometry and seamlessly stitched together. Final com-

pletion of still missing texture-free regions is obtained by

smooth interpolation. As demonstrated in our experiments,

visually meaningful reconstructions are obtained just based

on image local descriptors like SIFT, provided the geome-

try of regions of interest is known. The reconstruction most

often allows the clear interpretation of the semantic image

content. As a result, this work raises critical issues of pri-

vacy and rights when local descriptors of photos or videos

are given away for indexing and search purpose.

1. Introduction

Image indexing and retrieval have received a consider-

able attention in the last few years, thanks to the general-

ization of digital personal devices. Existing systems now

search in millions [17, 14] to hundred millions [8] of im-

ages on a single machine.

The most successful frameworks rely on local descrip-

tors, such as the popular scale invariant feature transform

(SIFT) [12], attached to a number of “interest” regions ex-

tracted beforehand. For large scale image search, efficiency

requires that geometry information (position and shape of

interest regions) is first ignored and local appearance de-

scriptors are aggregated, e.g., within a bag of visual words

[18]. However, the precision of search based on such global

representations is often improved subsequently by getting

back to the geometry information in a post-verification step

that filters out inconsistent matches [16].

One key application of such systems is near-duplicate

detection [2, 22], which is used in particular to detect of

illegal copies. It is worth noting that the best perform-

ing approaches (e.g., [3]) in the copy detection task of

TRECVID [19] rely on local descriptors and use a post-

verification scheme. Recently, following a trend in water-

marking system design, researchers realized that copy de-

tection is a non-collaborative game: a pirate can lure the

system by altering an image in a proper manner [10].

In this paper, we address another security aspect raised

by image indexing: the privacy of images. When a copy-

right holder resorts to a third party content based image re-

trieval system, it would rather pass images’ fingerprints to

this third party than share its sensitive contents. This im-

age information that allows efficient and accurate indexing

and comparison of contents is typically composed of local

appearance descriptors and additional meta-data, including
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geometrical information to allow post-verification, associ-

ated with detected regions of interest.

Nevertheless, a privacy threat remains: since the descrip-

tors extracted from an image provide a “summary” of its vi-

sual properties over its most informative fragments, it might

be possible to use them to interpret the image content or,

even, to create a pirated copy. Such reconstructions were

evidenced for features like filters, where they were used

[9, 20] to visually represent the information conveyed by

the features.

In this paper, we show that this is also the case for state-

of-the-art descriptors. We present and demonstrate an al-

gorithm for reconstructing an image from its local descrip-

tors, here based on SIFT, and associated geometric infor-

mation. Similar to [5] and [21], we use an external image

database to help the reconstruction. However, in contrast

to these approaches that are geared towards image editing

and image generation, we are not interested in completing

or inpainting images in a convincing way. Our main ob-

jective is to show how a simple technique could permit an

“image hacker” to interpret the content of the original im-

age, and this even if there is no similar image in his external

database.

Our technique progressively builds an approximation of

the unknown image by reconstructing its regions of inter-

est one by one. First, for each region the nearest descriptor

is searched in the external database and the corresponding

image patch is extracted and reshaped according to geomet-

ric information attached to the region. This patch is sub-

sequently pasted, after receiving a correction that makes it

blend seamlessly in the current reconstruction of the image.

After all regions of interest have been approximately recov-

ered and glued together, some image portions might still be

missing. The absence of detected interest regions indicates

that these portions should be fairly deprived of texture and

structure. They are reasonably reconstructed by smooth in-

terpolation from reconstructed boundary conditions.

Not surprisingly, the resulting image is not perfect (see

Figure 1 for a first illustration, and other examples pre-

sented in experimental section). However, it is visually

close enough to the original unknown image to interpret

its content. This makes explicit the privacy threat that lies

in local image descriptions. Copyright holders, in particu-

lar, should thus be aware of the surprising amount of visual

information given away when passing such descriptions to

third party indexing and search systems.

The paper is organized as follows. Section 2 states more

precisely the reconstruction problem that we address, with

discussion of related works. The actual reconstruction al-

gorithm is presented in Section 3. Experiments reported in

Section 4 demonstrate the strengths of the algorithm as well

as some of its limitations, which are discussed.

2. Problem statement

In this section, we first introduce the image information

provided by a typical local description software. We then

proceed with defining and analyzing the image reconstruc-

tion problem we want to solve based on such an informa-

tion. Finally, we briefly discuss the relationship of this prob-

lem with other image manipulation tasks that aim at build-

ing images out of fragments.

2.1. Image description

A local description scheme, as depicted by Figure 2, is

assumed in the rest of the paper. More precisely, an image

with support Ω is described by a set of ”interest regions”

extracted by a detector. Each region is mapped to an in-

tensity patch (a disc in our case, with regions being ellip-

tically shaped1), whose appearance is summarized by a d-

dimensional descriptor vi ∈ R
d. The number of regions of

interest depends on the image size and content.

As the output of the local description program, we typi-

cally have the following information for i-th interest region:

• appearance descriptor vi;

• coordinates xi = (xi, yi) ∈ Ω of region’s center;

• scale si and dominant gradient orientation oi;

• symmetric definite matrix Ai that defines the elliptic

support of the region.

Geometric information (xi, oi, Ai) uniquely defines the

affinity Wi mapping an elliptic image patch to a centered

normalized circular patch with dominant orientation 0.

All or part of above quantities are needed by the indexing

system, in particular geometrical information is used during

the geometrical verification stage, as done in [12, 16]. In

the following, we denote Ri = {vi,xi, si, oi, Ai} this set

of quantities associated with an interest region. Abusing the

terminology, we refer to it as the ”descriptor” of this region.

In this paper, we focus on SIFT descriptors [12], though

our method should work for most local descriptors. SIFT

descriptors are invariant to image orientation and scale, and

are robust to affine and perspective distortions. They come

in the form of normalized positive 128-dimensional vectors

(d=128). As region detector, we use an Hessian-affine tech-

nique [13]. Both detection and description are provided by

Mikolajczyk’s software, which is used in many works on

image indexing, e.g., in [16, 7]. Given its output on an im-

age, we aim at reconstructing this image approximately.

2.2. The reconstruction challenge

Reconstructing a single image patch from its local de-

scriptor is impossible because local description drastically

1Note that the descriptor vi is computed on a normalized square patch.

However, to avoid corner artifacts, only the pixels of the inscribed disc are

used at reconstruction time.

338



→ → → Ri = {vi,xi, si, oi, Ai}

Figure 2. Image analysis stage, as done by a typical local description program. Regions of interest are first detected and affine-normalized

to a fixed-size square patch, which is subsequently described by a local descriptor and additional meta-data used in geometrical verification.

Note that in our reconstruction approach (see Section 3), we will reconstruct elliptic patches out of normalized circular patches.

compacts appearance information for both invariance and

robustness purposes. It typically captures some aspects of

local contrast distribution. As a consequence the descrip-

tion function is a many-to-one mapping whose inversion is

ill-posed, unless appropriate additional priors or constraints

are used. An exemplar-based prior will be obtained in our

approach, thanks to an external image database. From these

images, possibly very different from the unknown image of

interest, a large number of image patches and associated de-

scriptors will be extracted to allow approximate and simple

inversion of local description function.

In the case of SIFTs, only weighted histograms of in-

tensity gradient orientations computed over a partition of

the normalized image patch are accounted for. Hence, the

following difficulties have to be overcome when using the

regions of interest that have been approximately recovered

from this type of descriptors:

• There is no chrominance information.

• Since the descriptors are normalized according to the

Euclidean norm, the absolute contrast of a given inter-

est region is not known.

Also, the image is unevenly described, see Figure 3. In-

deed, interest region detectors aim at selecting informative

image fragments, typically those with specific contrast pat-

terns. Texture and structure free regions of the image are

thus devoid of interest regions and do not get described

at all. These regions are usually very smooth in intensity,

uniform sky portions for instance. Conversely, structure

and/or texture regions trigger lots of overlapping region de-

tections. Some pixels in such regions can get covered by

more than one hundred interest regions spanning a large

range of scales, shapes and positions.

2.3. Link to image editing

Our image reconstruction problem bears connection with

a number of image editing tasks where an image is built

out of multiple images or image fragments, sometimes

with some amount of interactivity: image composing and

cloning where image cutouts are pasted in a new back-

ground; image completion and inpainting for restoration,

correction or editing; stitching of multiple views from a
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Figure 3. Number of (elliptical) regions of interest covering each

pixel of the original image. Some pixels belong to many regions,

but many locations are not or poorly described.

scene to create panoramas for instance; automatic collage

of multiple photos; “image analogy” (example-based im-

age generation from auxiliary information such as low-res

images for super-resolution or semantic segmentation for

texture-by-number).

As we shall see, our reconstruction algorithm resorts to

basic tools (harmonic correction or interpolation) that have

been extensively used within aforementioned image editing

tasks. Addressing a completely different problem though,

our work drastically departs from these research trends in

several ways:

• Whereas in image editing problems information

mostly remains attached to pixel grid (either in the
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color domain or in the gradient domain), the input data

is, in our case, of a very different nature (compacted

descriptor domain with spatial information partly lost),

which makes the task especially challenging as ex-

plained earlier. In particular, as opposed to image com-

pletion and image inpainting contexts, we do not have

initial image data to start with.

• Image stitching and exemplar-based image generation

techniques, whether for inpainting, image analogy or

photo-collage, rely on collections of images or of im-

age fragments that are quite homogeneous: in patch-

based inpainting, all patches come from the image it-

self and they are not normalized to a fixed size irre-

spective of their original size; in image completion

from large photo collections and in photo collages,

large fragments of real photos are used, which helps

preserving both visual and semantic quality of final

composite; in image analogy, example patches with

auxiliary information have to be very consistent with

the input to be processed; panorama stitching concerns

only few images of very similar content. In our case,

there is a very large number of fragments (several thou-

sands), which drastically differ in size, detail level and

color, to be assembled.

• The amount of overlap between fragments can be ex-

tremely large at some places in our case, with nested

inclusions; in contrast, in all exemplar-based image

generation or completion techniques, fragments only

overlap over thin borders such that most pixels of fi-

nal image belong to only one source fragment, others

rarely belonging to more than two.

• If final evaluation remains subjective for both our work

and mentioned tools, we are not aiming at excellent

visual quality of assembled image, simply at semantic

recovery of most visual content.

3. Reconstruction algorithm

3.1. Overview

As explained in Section 2, we consider an external

database of color images Ik, k=1 · · ·M , from which a set

of interest regions are extracted off-line and described as

Rj = {vj ,xj , sj , oj , Aj}, j=1 · · ·m. We shall denote

Sj the pixel support of j-th region (ellipse centered at xj

and with shape defined by Aj) and k(j) the index of the

database image it stems from.

These regions and associated image patches will be used

as a prior to invert local description function. Given a set

of query descriptors Ri = {vi,xi, si, oi, Ai}, i = 1 · · ·n,

extracted in the same way from an unknown color image I

with support Ω, we aim at reconstructing this image approx-

imately. The reconstruction proceeds as follows:

Figure 5. Reconstruction without blending: the patches are here

copied without being adapted, yielding poor reconstruction. See

Figure 4 for the original image.

1. For each query appearance descriptor vi, search its

nearest neighbor in the descriptor database

j∗ = arg max
j∈{1···m}

‖vi − vj‖2, (1)

and recover the corresponding elliptic image patch

q∗
j = Ik(j∗)(Sj∗). (2)

Warp this patch such that it fits into the destination el-

lipse Si ⊂ Ω:

pi = W−1
i ◦Wj∗(qj∗). (3)

2. Seamlessly stitch all patches pi, i = 1 · · ·n, together

to obtain a partial reconstruction with support S =
∪n
i=1Si ⊂ Ω (see details below) .

3. Complete remaining empty zone S̄ = Ω\S by smooth

interpolation, as shown in Figure 4 (see details below).

3.2. Seamless stitching of patches

Recovered image patches are numerous, they span a

large range of sizes and shapes and they overlap a lot.

This makes their joint stitching difficult. We take instead

a ”dead leaves” approach by stacking patches one after an-

other, newly added patch partly occluding the current re-

construction if it overlaps it. Since large patches are more

likely to exhibit visual artifacts due to extreme stretching of

original source patch, we want to favor the contribution of

smaller patches. The order of sequential stitching is thus

chosen according to decreasing support’s sizes.

Such a simple stacking is not sufficient though to get a

satisfactory reconstruction. Indeed, since patches originate
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Figure 4. From left to right: the original picture and the reconstruction before and after completion of uncovered regions.

from a large number of unrelated images, they usually ex-

hibit very different appearances (chrominance, intensity and

texture). This results in a disruptive patchwork effect as il-

lustrated in Figure 5. If removing texture and structure dis-

continuities is difficult, this is not the case for color and in-

tensity discontinuities. Such seams are easily concealed by

Poisson image editing [15], as routinely done for cloning,

composing and stitching.

Consider the stage of sequential stitching where i-th im-

age patch pi with support Si has to be incorporated. De-

note {I(x), x ∈ T} the image reconstructed up to that

point with T the union of supports of patches used so far.

If Si ∩ T = ∅, the new patch is simply copied in place:

I(x) = pi(x), ∀x ∈ Si. If Si overlaps T , the imported

patch is modified by an additive harmonic (null Laplacian)

correction such that it fits exactly current image I at the bor-

der of the overlapping regions. More precisely, let’s denote

∂Si = {x ∈ Si ∩ T : N(x) ∩ (T \ Si) 6= ∅}, the in-

tersection of the inner border of Si (according to 4-nearest

neighborhood N(.)) with T . Color values over ∂Si stay as

in current reconstruction, whereas new values are computed

over S̃i = Si \ ∂Si such that:

∀x ∈ S̃i, |N(x) ∩ Si|I(x)−
∑

y∈N(x)∩S̃i

I(y) =

∑

y∈N(x)∩∂Si

I(y) +
∑

y∈N(x)∩Si

[pi(x)− pi(y)].

(4)

These three discrete Poisson equations (one per channel) on

domain S̃i with Dirichlet boundary conditions have unique

solutions that are obtained efficiently with either direct or it-

erative sparse solvers. Note that for better results, we work

in CIE-Lab color space that separates image intensity from

chrominance while exhibiting good perceptual regularity.

Clamping is performed if resulting values are not in the ad-

missible range.

3.3. Final completion by interpolation

When all patches recovered from descriptors have been

stitched together, the image reconstruction is complete over

S = ∪n
i=1Si ⊂ Ω. Fragments that are still missing

are likely to exhibit only little texture and structure in the

original image. Hence, they are simply approximated by

harmonic interpolation of known reconstruction over ∂S.

Mathematically it is the same problem as before but with-

out imported patch information:

∀x ∈ S̄, |N(x)|I(x)−
∑

y∈N(x)∩S̄

I(y) =
∑

y∈N(x)∩∂S

I(y). (5)

This system is solved as previous ones. Note however that,

if S̄ has more than one connected component, the system

can be split into several independent subproblems, one per

component, for sake of efficiency.

4. Experiments

In this section, after introducing the datasets used in our

experiments, we present the reconstruction results for sev-

eral images and underline the remaining weaknesses of the

reconstruction. We then analyze the impact of the external

database size on the final reconstruction.

4.1. Datasets

The experiments are carried out using two image datasets

introduced for the evaluation of indexing systems: the IN-

RIA Holidays [6] and Copydays [4] datasets. Both are com-

posed of holiday snapshots. The first one contains 1491

images grouped in 500 distinct sets, each of which is as-

sociated with the same scene or object. Different types of

photos are included: natural images, man-made, crowd, etc.

The entire dataset is described by 6 756 563 SIFT descrip-

tors. The Copydays dataset is composed of 157 indepen-

dent photos and several (artificially) transformed versions

of these images, which were used as queries in [4]. We do

not use these synthetic transformed images in our paper.

Our goal is to measure to what extent the interpretation

of the reconstructed image content is possible. Therefore,

the performance of the algorithm is judged in a subjec-

tive manner, based on the quality of the reconstruction with

respect to a possible interpretation by human. We there-
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fore present reconstruction results, and underline failure and

pathological cases. Two scenarios are considered:

Scenario I: The images of Copydays are reconstructed us-

ing Holidays. As there is no intersection (no common ob-

ject or scene) between the two datasets, this scenario cor-

responds to the case where the image to be reconstructed

has no corresponding image in the external database used

to support the reconstruction. A few images of monu-

ments downloaded from the web are also considered.

Scenario II: The queries of Holidays are reconstructed us-

ing the Holidays dataset. Each query is removed in a

leave-one-out manner. This scenario reflects the case

where the image to reconstruct is similar to some images

of the external dataset, which is likely to happen on com-

mon objects, logos, or famous places if we use a large

external set. There is at least one image similar to the

image to reconstruct in the dataset.

4.2. Reconstruction results

Hereafter, we analyze the impact of the evaluation sce-

nario and of the external database size on the reconstruction.

We also underline some limitations of the algorithm, most

of which are inherent in the description used as input.

Scenario I vs Scenario II. Reconstruction results for vari-

ous types of scenes are presented in Figure 6 and Figure 7,

for Scenario I and II, respectively. In both cases, the humans

(the man on the bike in Figure 6, and the Asian women in

Figure 7) are not very well reconstructed, and require an

interpretation effort to distinguish the person. However, it

is still possible to recognize the person if the face is large

enough, see the dictator in Figure 10. Natural (trees, leaves)

and man-made objects can be recognized to some extent:

the cars can be localized in the left-most image of Figure 6.

However it is not possible to recognize their brands. Over-

all, the buildings and text look better than vegetation or

human beings. Famous monuments are easily recognized

from the reconstructed images, see Figure 8.

Comparing the results from Scenario I (Figure 6) to those

of Scenario II (Figure 7), the reconstruction is slightly im-

proved if similar images are contained in the database. Note

that if the image to reconstruct is in the external database,

then the reconstructed image is almost perfect (except for

the uncovered areas, which are interpolated): only interpo-

lation artifacts are observed.

Limitations: Although our method reconstructs an inter-

pretable image, the reconstruction is imperfect. Hereafter

we focus on the main artifacts and why they appear.

Color. The fact that color is poorly reproduced is not sur-

prising because SIFT descriptors do not contain any color

or absolute photometric information. In some cases, as for

vegetation, texture and color are related and the dominant

Figure 8. Reconstruction of famous buildings (Scenario I).

color remains satisfactory. However, this is not the case

in general. Looking at Figure 10, it appears that a black

and white image is reconstructed with colors, and the dom-

inant color varies from one reconstruction to another. This

is because the algorithm is sensitive to the selection of the

first patches (which are different in Figure 10 because the

database is not the same), which have a significant impact

on the dominant color. In our opinion, the best way to han-

dle color would be to insert the user in the loop by using a

weakly supervised reconstruction, or by using a dedicated

colorization technique, as the one proposed in [11].

The richness of the image description has a strong impact

on the reconstruction quality. Images described by few de-

scriptors (less than 100) are poorly reconstructed in general,

as shown by Figure 9, where the original image is described

by a limited number of salient regions. Moreover, most of

the image pixels are not covered at all. In that case, interpo-

lation over large areas with few boundary conditions fails to
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Figure 6. Scenario I: Reconstructions of images from Copydays using the external dataset Holidays.

Figure 7. Scenario II. Reconstructions of images from Holidays using Holidays deprived of query image as external dataset.

invent the missing area, for instance the clouds in the sky.

Even if the uncovered regions contain a limited amount of

visual information, the overall rendering severely impacts

the interpretation of the image.

Finally, pixelization occurs when large regions are recon-

structed from small ones. The absolute photometric inten-

sity is often quite different from the original image, and spu-

rious edges and lines appear.

Impact of the size of the database. Intuitively, the larger

the external database, the better the reconstruction: in that

case more tuples (descriptors,patches) are available and the

probability to find a better patch is higher. This is confirmed

by Figure 10, where two images are reconstructed using an

external database of increasing size. As the database grows,

the artifacts tend to disappear and the details are reproduced

with higher fidelity.

Figure 9. An example of a picture with only 63 regions of interest:

(left) original picture; (right) reconstruction before completion

5. Conclusion

This paper, by showing that an image can be recon-

structed from its local descriptors in a way that allows inter-

pretation of its content by human, raises the problem of pri-

vacy of image description by state-of-the-art local descrip-

tors. To our knowledge, this issue is ignored in existing

indexing systems, despite the value of the indexed content.
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original image 12 images (5 distinct scenes) 52 images (20 scenes) 1491 images (500 scenes)

Figure 10. Left to Right: original image and its reconstruction based on an external image set of increasing size: 12, 52 and 1491 images.

The proposed method is entirely automatic, which sug-

gests that much better reconstruction could probably be ob-

tained with user interaction, in particular to overcome the

lack of color information. Doing so, it is still not clear, how-

ever, to which extent the images could be reconstructed with

sufficient commercial value and become pirated copies.

Content providers should take care of this issue.

6. Acknowledgements

This work was partly realized as part of the Quaero Project,

funded by OSEO, French State agency for innovation.

References

[1] M. Brown and D. G. Lowe. Automatic panoramic image

stitching using invariant features. IJCV, 74(1):59–73, 2007.

[2] O. Chum, J. Philbin, and A. Zisserman. Near duplicate image

detection: min-hash and tf-idf weighting. In BMVC, Septem-

ber 2008.

[3] M. Douze, H. Jégou, and C. Schmid. An image-based ap-

proach to video copy detection with spatio-temporal post-

filtering. IEEE Trans. Multimedia, 12(4):257–266, jun 2010.

[4] M. Douze, H. Jégou, H. Singh, L. Amsaleg, and C. Schmid.

Evaluation of GIST descriptors for web-scale image search.

In CIVR, July 2009.

[5] J. Hayes and A. Efros. Scene completion using millions of

photographs. In SIGGRAPH, 2007.

[6] H. Jégou, M. Douze, and C. Schmid. Hamming embedding

and weak geometric consistency for large scale image search.

In ECCV, October 2008.

[7] H. Jégou, M. Douze, and C. Schmid. Improving bag-of-

features for large scale image search. IJCV, 87(3), May 2010.

[8] H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregating
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