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Abstract

This paper offers the first variational approach to the
problem of dense 3D reconstruction of non-rigid surfaces
from a monocular video sequence. We formulate non-
rigid structure from motion (NRSfM) as a global variational
energy minimization problem to estimate dense low-rank
smooth 3D shapes for every frame along with the camera
motion matrices, given dense 2D correspondences.

Unlike traditional factorization based approaches to
NRSfM, which model the low-rank non-rigid shape using
a fixed number of basis shapes and corresponding coeffi-
cients, we minimize the rank of the matrix of time-varying
shapes directly via trace norm minimization. In conjunc-
tion with this low-rank constraint, we use an edge preserv-
ing total-variation regularization term to obtain spatially
smooth shapes for every frame. Thanks to proximal split-
ting techniques the optimization problem can be decom-
posed into many point-wise sub-problems and simple lin-
ear systems which can be easily solved on GPU hardware.
We show results on real sequences of different objects (face,
torso, beating heart) where, despite challenges in tracking,
illumination changes and occlusions, our method recon-
structs highly deforming smooth surfaces densely and ac-
curately directly from video, without the need for any prior
models or shape templates.

1. Introduction
Recovering completely dense 3D models of a scene ob-

served by a moving camera, where an estimate of its 3D
location is obtained for every pixel in the image, is a key
problem in computer vision. Rigid structure from mo-
tion (SfM) algorithms have made significant progress to-
wards this goal, with dense approaches to multi-view stereo
(MVS) [14, 28] able to acquire highly accurate models from
a collection of fully calibrated images. Recent variational
approaches to (SfM) have even allowed to perform real-time
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Figure 1. Our proposed pipeline for dense NRSfM. The first row
shows the input image stream. Dense long-term 2D trajectories
are first computed for every pixel in the reference frame using [15]
and used as input to our dense NRSfM algorithm.

dense reconstruction of rigid scenes [19] while estimating
the unknown camera motion from live video acquired with
a handheld camera; or to deal with sceces containing multi-
ple independently moving rigid objects [24].

These dense SfM approaches produce impressive and de-
tailed models of 3D objects purely from video sequences.
However, their common drawback is that they can only
handle scenes with rigid objects. In contrast, the field of
non-rigid structure from motion (NRSfM) focuses on the
reconstruction of deformable objects from video. Results
from this field have significantly advanced in recent years in
terms of their ability to reconstruct strong realistic non-rigid
motions [10, 26, 30] and to recover from its inherent ambi-
guities with the use of additional priors on the deformations
or the camera motion [4, 32]. In particular, the popular low-
rank shape constraint, first proposed by Bregler et al. [7],
has recently been shown to provide sufficient prior infor-
mation, together with camera orthonormality constraints, to
constrain the problem [1] and avoid ambiguous solutions
and practical algorithms have followed [12, 20].
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However, in contrast to their rigid counterparts, NRSfM
methods are typically sparse, i.e. they can only reconstruct
a small set of salient points. This results in very low reso-
lution 3D models that cannot capture fine detail. The leap
to dense non-rigid shape estimation has been slowed down
by the requirement for dense long-term 2D correspondences
which are particularly challenging to obtain in the presence
of non-rigid motion and large displacements. In practice, it
is only recently that robust methods have emerged that can
provide dense 2D trajectories for image points throughout
the full sequence when the scene contains non-rigid mo-
tion [15, 22, 23].

In this paper we take advantage of these recent advances
in variational optimization approaches to both: (i) dense es-
timation of rigid 3D shape(s) from video [19, 24] and (ii)
dense estimation of long-term 2D trajectories in videos of
non-rigid motion [15, 23]. Using a multi-frame motion flow
field as input, we adopt a variational setting to provide an
energy optimization approach to NRSfM that can provide 3D
estimates for all the pixels in a reference frame of a video se-
quence. The novelty of our method resides in combining the
low-rank shape prior with a powerful edge preserving spa-
tial regularization prior that estimates smooth but detailed
non-rigid shapes. Our results show that spatial smoothness
can act as an important additional cue to help resolve the
ambiguities inherent to the NRSfM problem and acquire ac-
curate non-rigid shapes.

2. Related work
In their seminal work, Bregler et al. [7] pioneered the

first solution to non-rigid structure from motion (NRSfM) by
extending Tomasi and Kanade’s [31] rigid factorization ap-
proach. Their insight was to incorporate a statistical shape
prior on the time evolving non-rigid shape into the factor-
ization formulation. This prior was expressed as a low-
rank shape constraint: the 3D shape at any frame in the
sequence can be expressed as a linear combination of an
unknown low-rank shape basis governed by time-varying
coefficients. Although this prior has proved to be a pow-
erful constraint and led to a wealth of solutions, in isola-
tion it is not sufficient to recover unambiguous deformable
shape and camera motion from video. The problem remains
ill-posed and the focus of NRSfM methods has been to re-
solve the inherent ambiguities, in particular to solve the core
problem of upgrading the solutions to metric space, using
additional constraints [4, 6, 13, 20, 32].

Most approaches have required the addition of extra pri-
ors on the shape or camera matrices to resolve the ambi-
guities such as: temporal smoothness [4, 32], near rigid-
ity (rigid component explains most of the motion) [4, 32],
smooth time trajectories [2, 16, 21], basis priors [4] or use
of a pre-defined trajectory basis (such as DCT) [2, 21].
However, recently it was shown that orthonormality con-

straints on the camera matrix were sufficient in addition to
the low-rank shape prior [1], and practical methods have
emerged [12, 20] .

Most NRSfM methods impose the low-rank constraint
explicitly by parameterizing the non-rigid shapes using a
pre-defined number of basis shapes and time-varying coef-
ficients. However, Dai et al. [12] recently noted that it is
this explicit representation of non-rigid shape in terms of
basis and coefficients that leads to additional basis ambigu-
ities. Instead, they imposed the low-rank shape constraint
directly on the matrix of time-varying shapes via trace norm
minimization as the tightest possible relaxation of rank min-
imization. Trace norm has also been successfully used in
compressed sensing and matrix completion [8] and more
recently for factorisation based rigid structure from mo-
tion [3].

Similarly to Dai et al. [12], in this paper we adopt a
trace norm minimization approach to estimate low-rank
non-rigid shapes. However, our method departs substan-
tially from Dai et al.’s by: (i) making the problem scal-
able to the use of a dense multi-frame flow field as input
to the NRSfM problem; (ii) embedding the low-rank shape
constraint within a global energy minimization framework
which allows to incorporate powerful spatial regularization
and recover smooth 3D shapes; and (iii) eliminating the re-
quirement that the exact number of basis shapes be known
in advance – in contrast, an important drawback of Dai et
al.’s approach is that it still requires this information for the
metric upgrade step. The result is the first dense template-
free formulation of NRSfM. Our approach provides robust
dense 3D estimates for every pixel in the reference image of
a time-varying shape without the use of any prior models,
using only the original footage.

Previous attempts to dense NRSfM have come from:
piecewise approaches that reconstruct local patches using
simple local models [10, 27] but require a post-processing
step to stitch all the local reconstructions into a single
smooth surface, and template based approaches [5] that re-
quire a 3D template to be provided.

Our system Given a video sequence acquired with a sin-
gle camera as input, our approach provides a complete
pipeline for dense NRSfM integrating 2D image matching
and 3D reconstruction in two steps (Figure 1 illustrates our
approach):
Dense 2D correspondences: First dense 2D correspon-
dences are established in the image sequence. Here we
take advantage of recent advances in robust and dense vari-
ational multi-frame motion estimation. While most works
on 2D motion estimation for video sequences focus on es-
timating frame-to-frame optical flow fields, recently new
Lagrangian approaches have been proposed that can han-
dle the estimation of long-term trajectories that associate



each world point with its entire 2D image trajectory over
an image sequence [15, 23]. In other words, these meth-
ods allow the computation of dense 2D correspondences
from a reference frame to each of the subsequent images in
the sequence which is the essential information needed for
3D reconstruction. These methods impose subspace con-
straints – the 2D trajectories are assumed to lie on a low-
dimensional space – that implicitly act as a trajectory regu-
larization term. This in turn leads to temporally consistent
motion fields and allows to cope with occlusions and large
displacements caused by non-rigid motion. More specifi-
cally, we adopt the formulation of [15] for colour images
with soft subspace constraints.
Dense 3D reconstruction: Given these dense correspon-
dences as input, our new variational energy optimization
approach alternates between solving for the camera matri-
ces and the non-rigid shape for every frame in the sequence.
Our energy combines: (i) a geometric data term that mini-
mizes image reprojection error, (ii) a trace norm term that
minimizes the rank of the time-evolving shape matrix and
(iii) an edge-preserving spatial regularization term that pro-
vides smooth 3D shapes.

3. Problem formulation
Consider an image sequence I1, . . . , IF ofF frames with

N pixels each where Iref is chosen to be the reference
frame (this will often be the first frame). The input to our
algorithm is a set of dense 2D tracks that have been esti-
mated in a pre-processing step. For every pixel in the ref-
erence image Iref , each track encodes its image location in
the subsequent F frames. Let p = 1, . . . , N be an index
for the pixels and (xfp, yfp) the location of the p-th point
in the f -th frame, f = 1, . . . , F . Note that, in the reference
frame, this location coincides with the location of the p-th
pixel on the image grid.

We adopt an orthographic camera model, where the 2×3
camera matrix Rf projects 3D points (Xfp, Yfp, Zfp) onto
image frame f following the projection equation:[
xf1 · · · xfN

yf1 · · · yfN

]
︸ ︷︷ ︸

Wf

= Rf

 Xf1 · · · XfN

Yf1 · · · YfN

Zf1 · · · ZfN


︸ ︷︷ ︸

Sf

(1)

where Wf stores the 2D locations of all N points in frame
f and the 3 × N matrix Sf represents the 3D shape ob-
served in the frame f . Since the objects we are observing
are non-rigid, the shape matrix Sf will be different for each
frame. Note that we have eliminated the translation com-
ponent from (1) by registering the image coordinates to the
centroid in each frame f . Stacking equation (1) vertically
for every frame f ∈ {1. · · · , F} , we can now formulate the
projection of the time varying shapes in all the frames as:

W = RS (2)

where, W is the input measurement matrix that contains the
full 2D tracks, S is the non-rigid shape matrix and R is the
motion matrix:

W︸︷︷︸
2F×N

=

W1

...
WF

, R︸︷︷︸
2F×3F

=

R1 ©
. . .

© RF

, S︸︷︷︸
3F×N

=

S1

...
SF

 (3)

We now define the problem of NRSfM as the joint esti-
mation of: (i) the set of orthographic camera matrices 1 R,
and (ii) the set of 3D shapes S or equivalently the 3D coor-
dinates (Xfp, Yfp, Zfp) of every point in every frame. The
matrix S can be also be interpreted as the trajectory matrix,
since its columns correspond to the 3D trajectories of each
point. It is also useful in our formulation to represent S
using the “permutation” operator P (S) that re-arranges the
entries of S into a F × 3N matrix such that the f -th row of
P (S) contains the X , Y and Z coordinates of all points of
the shape at frame f (i.e. all values of Sf ).

4. Dense reconstruction with trace norm and
spatial smoothness prior

To solve the dense NRSfM problem as defined in the pre-
vious section, we propose to minimize an energy of the fol-
lowing form, jointly with respect to the motion matrix R
and the shape matrix S:

E(R,S) = λEdata(R,S) + Ereg(S) + τEtrace(S) (4)

where Edata is a data attachment term, Etrace favours a
low-rank shape matrix, and Ereg is a term for the spatial
regularization of the trajectories in S. The positive con-
stants λ and τ are weights that control the balance between
these terms. We now describe each of these terms in detail.

The first term (Edata) is a quadratic penalty of the im-
age reprojection error

Edata =
1
2
‖W −RS‖2F (5)

where ‖ · ‖F denotes the Frobenius norm of a matrix. This
term penalizes deviations of the image measurements from
the orthographic projection equation (2).

The second term (Ereg) enforces edge-preserving spa-
tial regularization of the dense 3D trajectories that consti-
tute the columns of S. To formulate this term, let i be an
index (i=1,2,3) that selects the X , Y or Z coordinate of a
3D point. Si

f will then be the i-th row of the 3D shape Sf .
Since the 3D points that we reconstruct are associated with
projected pixel locations on the reference image Iref , each
element of Si

f is associated with a specific pixel of Iref . By

1Each Rf must satisfy the orthonormality constraint RfRT
f = I2×2



arranging these elements in the image grid of Iref , we con-
sider Si

f as a discrete 2D image of the same size as Iref .
We now denote the 2D gradient of this image at pixel p
by ∇Si

f (p). Following [9], we define this discrete gradi-
ent using forward differences in both horizontal and verti-
cal directions. We now define Ereg as the summation of
discretized Total Variation regularizers TV {·} [25]:

Ereg =
F∑

f=1

3∑
i=1

TV {Si
f} =

F∑
f=1

3∑
i=1

N∑
p=1

‖∇Si
f (p)‖ (6)

Total Variation based regularization smooths while pre-
serving discontinuities and has been successfully applied to
various related optic flow estimation [15, 34], and 3D re-
construction methods [19].

The third term (Etrace) penalises the number of inde-
pendent shapes needed to represent the deformable scene.
This is based on the realistic assumption that the shapes
that a deforming object undergoes over time lie on a low-
dimensional linear subspace [7]. Most NRSfM methods
[7, 20, 32] assume that the dimension of the shape subspace
is known beforehand. However, instead of using some a
priori dimension for this subspace to enforce a hard rank
constraint, similarly to [12], we penalize the rank of the
F × 3N matrix P (S). This is implemented using the trace
norm ‖ · ‖∗ (a.k.a. nuclear norm), which is the tightest con-
vex relaxation of the rank of a matrix and is given by the
sum of its singular values Λj :

Etrace = ‖P (S)‖∗ =
min(F,3N)∑

j=1

Λj (7)

5. Optimisation of the proposed energy
In this section, we solve the minimization of the pro-

posed energy (4), that can be written as follows:

min
S,R

λ

2
‖W −RS‖2F +

∑
f,i,p

‖∇Si
f (p)‖+ τ‖P (S)‖∗ (8)

Note that this energy is biconvex (not convex), due to the
bilinear term in Edata. To minimize it we alternate between
the estimation of the motion matrix R and the shape matrix
S leaving the other fixed as described in Algorithm 1. The
different components of this algorithm are presented in the
rest of this section.

5.1. Motion matrix estimation

The first alternation step of Algorithm 1 involves the re-
finement of the motion matrix R by minimising (8) w.r.t.
R, assuming that the shape matrix S is known. We param-
eterize the camera matrices Rf using quaternions, which
guarantee orthonormality. Only the term Edata depends on
R and we minimise it using Levenberg-Marquardt.

Algorithm 1: Variational non-rigid reconstruction
Initialise R,S ;
for alternation = 1, . . . , k do

Fix S and minimise (8) w.r.t. R using Levenberg-Marquardt
algorithm;
Fix R and minimise (8) w.r.t. S by alternating between
Algorithms 2 and 3 until convergence;

5.2. Shape estimation

The second alternation step of Algorithm 1 assumes that
the motion matrix R is known and minimises (8) w.r.t. to
the shape matrix S. Although the energy (8) is convex w.r.t.
S, it is non-trivial to minimise it using standard gradient de-
scent methods. To facilitate such minimisation we use prox-
imal splitting techniques [11] to decouple the trace norm
and TV regularisation parts of the energy. We introduce
an auxiliary variable S̄ and minimize (8) by alternating be-
tween the following two minimizations:

min
S

1
2θ
‖S−S̄‖2F+

λ

2
‖W −RS‖2F+

∑
f,i,p

‖∇Si
f (p)‖ (9)

min
S̄

1
2θ
‖S − S̄‖2F + τ‖P (S̄)‖∗ (10)

where θ is a quadratic relaxation parameter that is relatively
small so that the optimal S and S̄ are close. We can now
efficiently solve the sub-problems (9) and (10) using convex
optimization techniques.

Solving problem (9). The energy in (9) is convex but due
to the TV regularisation term it is non-differentiable. How-
ever using the Legendre-Fenchel transform [17], one can
dualise the regularization term in (9) and rewrite the corre-
sponding minimisation in its primal-dual form as:

min
S

max
q

{
1
2θ
‖S − S̄‖2F +

λ

2
‖W −RS‖2F

+
∑
f,i,p

{
Sfi(p)∇∗qi

f (p)− δ(qi
f (p))

}} (11)

where, q is the dual variable that contains the 2-vectors
qi
f (p), for each frame f , coordinate i and pixel p. Also,
∇∗ is the adjoint of the discrete gradient operator ∇ and
can be expressed as ∇∗ = −div(·), where div is the diver-
gence operator, after discretisation using backward differ-
ences [9]. Finally, δ(·) is the indicator function of the unit
ball:

δ(s) =
{

0 if ‖s‖ ≤ 1
∞ if ‖s‖ > 1 (12)

Following duality principles [9, 17], we solve the saddle
point problem (11) by deriving a primal-dual algorithm, de-
scribed in Algorithm 2. This algorithm allows a high degree
of parallelization and can be solved efficiently on a GPU.



Algorithm 2: Primal dual algorithm for problem (9)
Input: Measurement matrix W , current motion matrix estimates R

and low rank shapes S̄.
Output: Spatially smooth shapes S.
Parameters: λ, θ and step size σ of dual update.
Initialise the dual variable q using the estimates from the previous
run of this algorithm (If this is the first run, initialize q with 0).

while not converge do

Dq|{z}
3F×N

=

264 ∇
∗q1

1(1) . . . ∇∗q1
1(N)

...
. . .

...
∇∗q3

F (1) . . . ∇∗q3
F (N)

375;

S =
`
λRTR + 1

θ
I3F×3F

´−1
“
λRTW + S̄

θ
−Dq

”
;

for f = 1 to F , i = 1 to 3, p = 1 to N do

qif (p) =
qi
f (p)+σ∇Si

f (p)

max(1,‖qi
f
(p)+σ∇Si

f
(p)‖) ;

Solving problem (10). Notice that the quadratic term in
(10) can also be written as ‖P (S) − P (S̄)‖2F . Thus this is
a convex minimisation problem that can be solved using the
soft impute algorithm proposed in [18]. The steps that we
follow are summarized in Algorithm 3. The solution S̄ is
actually a low rank approximation of the spatially smooth
shape matrix S.

Algorithm 3: Soft impute algorithm for problem (10)
Input: Current estimate of spatially smooth shapes S.
Output: Low rank approximation S̄ of the shape matrix.
Parameters: τ , θ.

[U ,D,V ] = Singular Value Decomposition of P (S);
D̄ = min(D − θτI3F×3F ,0) ;
// (where min(·, ·) is an element-wise operator)

S̄ = P−1(UD̄V T );

5.3. Initialization of R and S

We adopt the following procedure to initialize R and
S. Assuming a dominant rigid component is present in the
scene, we use the rigid factorization algorithm of [31] to es-
timate the initial camera matrices {R1 · · ·RF } and a mean
shape. This mean shape is used as a rigid initialization of
the shape matrix S: the mean 3D shape is replicated for
every Sf in every frame f .

6. Experimental evaluation
As a preprocessing step, we normalize the measurement

matrix W so that all its entries are within [−1, 1]. In ad-
dition, the different terms of the proposed energy (4) are
normalized by applying the factor 1

FN to Edata and Ereg

and 1√
FN

to Etrace. In practice, we combine their effect
by applying a normalized weight τ̂ to the trace norm term,
defined as τ = τ̂

√
FN . Next, experiments on synthetic and

real sequences are described 2.

6.1. Synthetic face sequences

In this section we evaluate the performance of our
method quantitatively on sequences generated using dense
ground truth 3D data of a deforming face. We use 10
meshes of dense 3D data of different facial expressions cap-
tured using structured light [33]. We generate four different
sequences that differ in the number of frames and the range
and smoothness of the camera rotations and deformations,
see Figure 2(a). By projecting the 3D data onto an image
using an orthographic camera, we derived dense 2D tracks,
which we feeded as input to the NRSfM estimations.

We compare the results of our algorithm against two state
of the art NRSfM methods, Metric Projections (MP) [20] and
Trajectory Basis (TB) [2], since publicly available code ex-
ists for both and the algorithms were scalable. For MP and
TB we report the result for the number of basis shapes (≥ 2)
that gave the lowest 3D error.

Table 6.1 shows the results for each method. We define
the normalised per frame RMS error for the reconstructed
3D shape Sf with respect to the corresponding ground truth

shape SGT
f as: e3D = ||Sf−SGT

f ||F
||SGT

f ||F
. We report the mean

RMS error over all frames, after per-frame rigid alignment
with the corresponding ground truth shape using Procrustes
analysis. We also provide the rank of the reconstructed re-
sult for each case3. Next we give details about each syn-
thetic sequence and discuss the corresponding results.

Sequence 1. In this 10 frame long sequence, each frame
corresponds to a different facial expression. The face is ro-
tated about the vertical axis from +30◦ to −30◦ with re-
spect to the frontal view. This is a challenging setup since
the rank of the 3D shape is very high (close to 10). The re-
sults shown on the first row of Table 6.1 reveal that both MP
and TB fail to reconstruct this sequence while our approach
performs well.

Sequence 2. This setup is equivalent to the previous one
except that the rotations now ranged from +90◦ to −90◦.
This simple fact allows MP and TB to reduce their errors
substantially, which indicates that large rotations help in
NRSfM. The main drawback however, is that establishing
2D correspondences under this amount of rotation would
be unrealistic in a real world scenario due to occlusions.

Sequence 3. 99 frame long sequence generated by lin-
early interpolating between pairs of views to obtain smooth
3D deformations. Realistic rotations that contain some high
frequencies are simulated by upscaling (by a factor of 4)

2For more details and videos, visit: http://www.eecs.qmul.
ac.uk/˜rgarg/Variational_NRSfM

3Since the trace norm approximation of the rank results in some sin-
gular values being small but not exactly 0, for our method (case τ 6= 0)
we report the rank of the optimal 3D reconstructions retaining the singular
values of P (S) that explain 99% of the shape variance.

http://www.eecs.qmul.ac.uk/~rgarg/Variational_NRSfM
http://www.eecs.qmul.ac.uk/~rgarg/Variational_NRSfM


(a) Ground truth 3D shapes (top row) and dense 3D reconstructions for selected frames (bottom
row) in Sequence 4 using TB [2], MP [20] and our approach.See supplementary material for videos.

0 2 4 6 8 10 12 14 16

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

τ̂

3
D

e
r
r
o
r
e
3
D

 

 

Seq. 1

Seq. 2

Seq. 3

Seq. 4

(b) Normalized RMS 3D error with varying
trace norm strength for synthetic experiments.

Figure 2. Results on synthetic sequences.

TB [2] MP [20] Ours Ours (τ = 0)
Seq. 1 18.38%(2) 19.44%(3) 4.01%(9) 4.13%(10)
Seq. 2 7.47%(2) 4.87%(3) 3.45%(9) 3.76%(10)
Seq. 3 4.50%(4) 5.13%(6) 2.60%(9) 3.32%(99)
Seq. 4 6.61%(4) 5.81%(4) 2.81%(9) 3.89%(99)

Table 1. Quantitative evaluation on 4 synthetic face sequences. We
show average RMS 3D reconstruction errors for TB [2], MP [20]
and our approach. In all cases, the rank of the reconstructed result
is shown in brackets.

those estimated by our algorithm on the real face sequence
(Figure 3). Since this sequence assumes smooth deforma-
tions and high frequency rotations, the conditions are ideal
for TB [2] which outperforms MP. However, our method
outperforms both baseline methods.

Sequence 4. This setup is equivalent to the previous one
with the exception that the rotations are projected onto a
low frequency subspace to simulate the case of both smooth
rotations and deformations. This scenario shows the failure
of TB [2] to cope with rotation and deformation spaces that
share frequencies [21]. Once more, our approach achieves
the lowest 3D reconstruction errors.

For our method, we provide an additional column show-
ing the results obtained in the case when the trace norm
term was switched off, with τ = 0. As expected, the rank
of the reconstructions was much higher as were the 3D er-
rors. Figure 2(b) shows the effect on 3D errors of varying
the normalized trace norm weight parameter τ̂ . We observe
that the optimal reconstruction in all the synthetic sequences
is achieved with a similar value for τ̂ .

In conclusion, these experiments reveal some of the
strengths of our algorithm: (i) our approach can reconstruct
even in the case of small out-of-plane rotations where other
methods break down, (ii) it can cope both with smooth or
high frequency rotations and deformations.

6.2. Experiments on real sequences

In this section we present a qualitative evaluation of our
variational approach on three monocular video sequences

captured in natural environments under changes in lighting,
occlusions and large displacements.

Face sequence. Human faces undergoing different facial
expressions have been reconstructed in the past by NRSfM
methods; however, generally only of a few, often manually
tracked, feature points (fewer than 100). This 120 frame
long sequence of a subject performing natural expressions
was acquired under natural lighting conditions and displays
occlusions due to out-of-plane rotations.

To overcome the challenges in establishing dense 2D
correspondences due to the lack of texture on the skin,
in this sequence we used the gradient of all color im-
age channels (concatenated in a sequence of 6D vector-
valued images) as input to the multi-frame optical flow al-
gorithm [15]. Figure 3 shows some of the frames of the
sequence, and our fully dense 3D reconstructions rotated
using the recovered rotation matrices.

Back Sequence [26]. This is a 150 frame long sequence
of the back of a person deforming sideways and stretching.
The textured pattern worn by the subject was used to fa-
cilitate sparse feature matching in [26] but is not necessary
here. Figure 4 shows images and resulting 3D dense shapes
Sf , rotated according to the estimated matrices Rf .

Heart Sequence. In-vivo reconstruction from laparo-
scopic sequences is an area where NRSfM can be extremely
useful as stereo capture inside the body is often impossible
or can only be done with a very small baseline [29]. We
chose a challenging monocular sequence of a beating heart
taken during bypass surgery4. Figure 5 shows some frames
and the recovered dense shapes. Not only is our approach
robust to the moving specularities on the video but it can
recover the rhythmic deformations of the heart well, despite
the very small rotational motion component.

7. Conclusion
This paper presents the first variational approach for

dense 3D reconstruction of non-rigid scenes from a monoc-
ular sequence without prior scene knowledge. We have used

4Video available from http://hamlyn.doc.ic.ac.uk/vision



(a)

(b)

(c)

(d)

(e)

Figure 3. 3D reconstruction results of the real face sequence. (a) Input images. (b) Corresponding 3D shapes from original viewpoint
of the camera while the face rotates and deforms. (c-d) Shape deformation as observed from three-quarter and profile views respectively
(after taking out the rotational component of the face). (e) Rendered surfaces from a different viewpoint, using computed deformations and
rotations with augmented texture placed on the reference image. See supplementary material for videos.

the trace norm prior for low rank shapes along with TV
regularization to formulate the dense NRSfM problem as a
global energy minimisation scheme. Experimental results
on challenging real sequences show that our approach can
successfully generate dense 3D reconstructions even in the
presence of small rotations and low image texture. A future
extension of this work will be to incorporate photometric
image matching and 3D reconstruction into a single opti-
mization framework.
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