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Abstract
Recent work on mid-level visual representations aims to capture information at the
level of complexity higher than typical “visual words”, but lower than full-blown
semantic objects. Several approaches [5, 6, 12, 23] have been proposed to discover
mid-level visual elements, that are both 1) representative, i.e., frequently occurring
within a visual dataset, and 2) visually discriminative. However, the current ap-
proaches are rather ad hoc and difficult to analyze and evaluate. In this work,
we pose visual element discovery as discriminative mode seeking, drawing con-
nections to the the well-known and well-studied mean-shift algorithm [2, 1, 4, 8].
Given a weakly-labeled image collection, our method discovers visually-coherent
patch clusters that are maximally discriminative with respect to the labels. One
advantage of our formulation is that it requires only a single pass through the data.
We also propose the Purity-Coverage plot as a principled way of experimentally
analyzing and evaluating different visual discovery approaches, and compare our
method against prior work on the Paris Street View dataset of [5]. We also eval-
uate our method on the task of scene classification, demonstrating state-of-the-art
performance on the MIT Scene-67 dataset.

1 Introduction
In terms of sheer size, visual data is, by most accounts, the biggest “Big Data” out there. But,
unfortunately, most machine learning algorithms (with some notable exceptions, e.g. [13]) are not
equipped to handle it directly, at the raw pixel level, making research on finding good visual rep-
resentations particularly relevant and timely. Currently, the most popular visual representations in
machine learning are based on “visual words” [24], which are obtained by unsupervised clustering
(k-means) of local features (SIFT) over a large dataset. However, “visual words” is a very low-level
representation, mostly capturing local edges and corners ([21] notes that “visual letters” or “visual
phonemes” would have been a more accurate term). Part of the problem is that the local SIFT fea-
tures are relatively low-dimensional (128D), and might not be powerful enough to capture anything
of higher complexity. However, switching to a more descriptive feature (e.g. 2, 000-dimensional
HOG) causes k-means to produce visually poor clusters due to the curse of dimensionality [5].

Recently, several approaches [5, 6, 11, 12, 15, 23, 26, 27] have proposed mining visual data for dis-
criminative mid-level visual elements, i.e., entities which are more informative than “visual words,”
and more frequently occurring and easier to detect than high-level objects. Most such approaches
require some form of weak per-image labels, e.g., scene categories [12] or GPS coordinates [5] (but
can also run unsupervised [23]), and have been recently used for tasks including image classification
[12, 23, 27], object detection [6], visual data mining [5, 15], action recognition [11], and geometry
estimation [7]. But how are informative visual elements to be identified in the weakly-labeled vi-
sual dataset? The idea is to search for clusters of image patches that are both 1) representative, i.e.
frequently occurring within the dataset, and 2) visually discriminative. Unfortunately, algorithms
for finding patches that fit these criteria remain rather ad-hoc and poorly understood. and often
do not even directly optimize these criteria. Hence, our goal in this work is to quantify the terms
“representative” and “discriminative,” and show that a formulation which draws inspiration from
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Figure 1: The distribution of patches in HOG feature space is very non-uniform and absolute distances cannot
be trusted. We show two patches with their 5 nearest-neighbors from the Paris Street View dataset [5]; beneath
each nearest neighbor is its distance from query. Although the nearest neighbors on the left are visually much
better, their distances are more than twice those on the right, meaning that the actual densities of the two regions
will differ by a factor of more than 2d, where d is the intrinsic dimensionality of patch feature space. Since this
is a 2112-dimensional feature space, we estimate d to be on the order of hundreds.

the well-known, well-understood mean-shift algorithm can produce visual elements that are more
representative and discriminative than those of previous approaches.

Mining visual elements from a large dataset is difficult for a number of reasons. First, the search
space is huge: a typical dataset for visual data mining has tens of thousands of images, and finding
something in an image (e.g., finding matches for a visual template) involves searching across tens
of thousands of patches at different positions and scales. To make matters worse, patch descriptors
tend to be on the order of thousands of dimensions; not only is the curse of dimensionality a constant
problem, but we must sift through terabytes of data. And we are searching for a needle in a haystack:
the vast majority of patches are actually uninteresting, either because they are rare (e.g., they may
contain multiple random things in a configuration that never occurs again) or they are redundant due
to the overlapping nature of patches. This suggests the need for an online algorithm, because we
wish to discard much of the data while making as few passes through the dataset as possible.

The well-known mean-shift algorithm [2, 3, 8] has been proposed to address many of these problems.
The goal of mean-shift is to find the local maxima (modes) of a density using a sample from that
density. Intuitively, mean-shift initializes each cluster centroid to a single data point, then iteratively
1) finds data points that are sufficiently similar to each centroid, and, 2) averages these data points
to update the cluster centroid. In the end, each cluster generally depends on only a tiny fraction of
the data, thus eliminating the need to keep the entire dataset in memory.

However, there is one issue with using classical mean-shift to solve our problem directly: it only
finds local maxima of a single, unlabeled density, which may not be discriminative. But in our
case, we can use the weak labels to divide our data into two different subsets (“positive” (+) and
“negative” (−)) and seek visual elements which appear only in the “positive” set and not in the
“negative” set. That is, we want to find points in feature space where the density of the positive
set is large, and the density of the negative set is small. This can be achieved by maximizing the
well-studied density ratio p+(x)/p−(x) instead of maximizing the density. While a number of
algorithms exist for estimating ratios of densities (see [25] for a review), we did not find any that
were particularly suitable for finding local maxima of density ratios. Hence, the first contribution of
our paper is to propose a discriminative variant of mean-shift for finding visual elements. Similar to
the way mean-shift performs gradient ascent on a density estimate, our algorithm performs gradient
ascent on the density ratio (section 2). When we perform gradient ascent separately for each element
as in standard mean-shift, however, we find that the most frequently-occuring elements tend to
be over-represented. Hence, section 3 describes a modification to our gradient ascent algorithm
which uses inter-element communication to approximate common adaptive bandwidth procedures.
Finally, in section 4 we demonstrate that our algorithms produce visual elements which are more
representative and discriminative than previous methods, and in section 5 we show they significantly
improve performance in scene classification.

2 Mode Seeking on Density Ratios
Our goal is to extract discriminative visual elements by finding the local maxima of the density ratio.
However, one issue with performing gradient ascent directly on standard density ratio estimates is
that common estimators tend to use a fixed kernel bandwidth, for example:

r̂(x) ∝
n∑

i=1

θiK(‖x− xi‖/h)

where r̂ is the ratio estimate, the parameters θi ∈ R are weights associated with each datapoint,
K is a kernel function (e.g., a Gaussian), and h is a globally-shared bandwidth parameter. The
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bandwidth defines how much the density is smoothed before gradient ascent is performed, meaning
these estimators assume a roughly equal distribution of points in all regions of the space. Unfortu-
nately, absolute distances in HOG feature space cannot be trusted, as shown in Figure 1: any kernel
bandwidth which is large enough to work well in the left example will be far too large to work well
in the right. One way to deal with the non-uniformity of the feature space is to use an adaptive
bandwidth [4]: that is, different bandwidths are used in different regions of the space. However,
previous algorithms are difficult to implement for large data in high-dimensional spaces; [4], for in-
stance, requires a density estimate for every point used in computing the gradient of their objective,
because their formulation relies on a per-point bandwidth rather than a per-cluster bandwidth. In
our case, this is prohibitively expensive. While approximations exist [9], they rely on approximate
nearest neighbor algorithms, which work for low-dimensional spaces (≤ 48 dimensions in [9]), but
empirically we have found poor performance in HOG feature space (> 2000 dimensions). Hence,
we take a different approach which we have tailored for density ratios.

We begin by using a result from [2] that classical mean-shift (using a flat kernel) is equivalent to
finding the local maxima of the following density estimate:∑n

i=1 max(b− d(xi, w), 0)

z(b)
(1)

In standard mean-shift, d is the Euclidean distance function, b is a constant that controls the kernel
bandwidth, and z(b) is a normalization constant. Here, the flat kernel has been replaced by its
shadow kernel, the triangular kernel, using Theorem 1 from [2]. We want to maximize the density
ratio, so we simply divide the two density estimates. We allow an adaptive bandwidth, but rather
than associating a bandwidth with each datapoint, we compute it as a function of w which depends
on the data. ∑npos

i=1 max(B(w)− d(x+i , w), 0)∑nneg

i=1 max(B(w)− d(x−i , w), 0)
(2)

Where the normalization term z(b) is cancelled. This expression, however, produces poor estimates
of the ratio if the denominator is allowed to shrink to zero; in fact, it can produce arbitrarily large
but spurious local maxima. Hence, we define B(w) as the value of b which satisfies:

nneg∑
i=1

max(b− d(x−i , w), 0) = β (3)

Where β is a constant analogous to the bandwidth parameter, except that it directly controls how
many negative datapoints are in each cluster. Note the value of the sum is strictly increasing in b
when it is nonzero, so the b satisfying the constraint is unique. With this definition of B(w), we are
actually fixing the value of the denominator of (2) (We include the denominator here only to make
the ratio explicit, and we will drop it in later formula). This approach makes the implicit assumption
that the distribution of the negatives captures the overall density of the patch space. Note that if
we assume the denominator distribution is uniform, then B(w) becomes fixed and our objective is
identical to fixed-bandwidth mean-shift.

Returning to our formulation, we must still choose the distance function d. In high-dimensional
feature space, [20] suggests that normalized correlation provides a better metric than the Euclidean
distance commonly used in mean-shift. Formulations of mean-shift exist for data constrained to
the unit sphere [1], but again we must adapt them to the ratio setting. Surprisingly, replacing the
Euclidean distance with normalized correlation leads to a simpler optimization problem. First, we
mean-subtract and normalize all datapoints xi and rewrite (2) as:

npos∑
i=1

max(w>x+i − b, 0) s.t.
∑nneg

i=1 max(w>x−i − b, 0) = β

‖w‖2 = 1
(4)

Where B(w) has been replaced by b as in equation (3), to emphasize that we can treat B(w) as a
constraint in an optimization problem. We can further rewrite the above equation as finding the local
maxima of:

npos∑
i=1

max(w>x+i − b, 0)− λ‖w‖2 s.t.
nneg∑
i=1

max(w>x−i − b, 0) = β (5)
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Figure 2: Left: without competition, the algorithm from section 2 correctly learns a street lamp element.
Middle: The same algorithm trained on a sidewalk barrier, which is too similar to the very common “window
with railing” element, which takes over the cluster. Right: with the algorithm from section 3, the window gets
down-weighted and the algorithm can learn the sidewalk barrier.

Note that (5) is equivalent to (4) for some appropriate rescaling of λ and β. It can be easily shown
that multiplying λ by a constant factor does not change the relative location of local maxima, as long
as we divide β by that same factor. Such a re-scaling will in fact result in re-scaling w by the same
value, so we can choose a λ and β which makes the norm of w equal to 1. 1

After this rewriting, we are left with an objective that looks curiously like a margin-based method.
Indeed, the negative set is treated very much like the negative set in an SVM (we penalize the linear
sum of the margin violations), which follows [23]. However, unlike [23], which makes the ad-hoc
choice of 5 positive examples, our algorithm allows each cluster to select the optimal number of
positives based on the decision boundary. This is somewhat reminiscent of unsupervised margin-
based clustering [29, 16].

Mean-shift prescribes that we initialize the procedure outlined above at every datapoint. In our
setting, however, this is not practical, so we instead use a randomly-sampled subset. We run this
as an online algorithm by breaking the dataset into chunks and then mining, one chunk at a time,
for patches where w>x − b > −ε for some small ε, akin to “hard mining” for SVMs. We perform
gradient ascent after each mining phase. An example result for this algorithm is shown in in Figure 2,
and we include further results below. Gradient ascent on our objective is surprisingly efficient, as
described in Appendix A.

3 Better Adaptive Bandwidth via Inter-Element Communication
Implicit in our formulation thus far is the idea that we do not want a single mode, but instead many
distinct modes which each corresponds to a different element. In theory, mode-seeking will find
every mode that is supported by the data. In practice, clusters often drift from weak modes to
stronger modes, as demonstrated in Figure 2 (middle). One way to deal with this is to assign smaller
bandwidths to patches in dense regions of the space [4], e.g., the window railing on row 1 of Figure 2
(middle) would hopefully have a smaller bandwidth and hence not match to the sidewalk barrier.
However, estimating a bandwidth for every datapoint in our setting is not practical, so we seek an
approach which only requires one pass through the data. Since patches in regions of the feature space
with high density ratio will be members of many clusters, we want a mechanism that will reduce
their bandwidth. To accomplish this, we extend the standard local (per-element) optimization of
mean-shift into a joint optimization among them different element clusters. Specifically, we control
how a single patch can contribute to multiple clusters by introducing a sharing weight αi,j for each
patch i that is contained in a cluster j, akin to soft-assignment in EM GMM fitting. Returning to our
fomulation, we maximize (again with respect to the w’s and b’s):

npos∑
i=1

m∑
j=1

αi,j max(w>j x
+
i − bj , 0)− λ

m∑
j=1

‖wj‖2 s.t. ∀j
nneg∑
i=1

max(w>j x
−
i − bj , 0) = β (6)

Where each αi,j is chosen such that any patch which is a member of multiple clusters gets a
lower weight. (6) also has a natural interpretation in terms of maximizing the “representative-
ness” of the set of clusters: clusters are rewarded for representing patches that are not repre-
sented by other clusters. But how can we set the α’s? One way is to set αi,j = max(w>j x

+
i −

bj , 0)/
∑m

k=1 max(w>k x
+
i −bk, 0), and alternate between setting the α’s and optimizing the w’s and

1Admittedly this means that the norm of w has an indirect effect on the underlying bandwidth: specifically
if the norm of w is increased, it has a similar effect as a proportional derease in β in (4). However, since w
is roughly proportional to the density of the positive data, the bandwidth is only reduced when the density of
positive data is high.
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Figure 3: Purity-coverage graph for our algorithm and baselines. In each plot, purity measures the accuracy
of the element detectors, whereas coverage captures how often they fire. Curves are computed over the top 25
(left) and 200 (right) elements. Higher is better.

b’s at each iteration. Intuitively, this algorithm would be much like EM, alternating between softly
assigning cluster memberships for each datapoint and then optimizing each cluster. However, this
goes against our mean-shift intuition: if two patches are really instances of the same element, then
clusters initialized from those two points should converge to the same mode and not “compete” with
one another. So, our heuristic is to first cluster the elements. Let Cj be the assigned cluster for the
j’th element. Then we set

αi,j =
max(w>j x

+
i − bj , 0)

max(w>j x
+
i − bj , 0) +

∑m
k=1 I(Ck 6= Cj) max(w>k x

+
i − bk, 0)

(7)

In this way, any “competition” from elements that are too similar to each other is ignored. To obtain
the clusters, we perform agglomerative (UPGMA) clustering on the set of element clusters, using
the negative of the number of overlapping cluster members as a “distance” metric.

In practice, however, it is extremely rare that the exact same patch is a member of two different clus-
ters; instead, clusters will have member patches that merely overlap with each other. Our heuristic
deal with this is to compute a quantity α′i,j,p which is analogous to the αi,j defined above, but is
defined for every pixel p. Then we compute αi,j for a given patch by averaging α′i,j,p over all pixels
in the patch. Specifically, we compute αi,j for patch i as the mean over all pixels p in that patch of
the following quantity:

α′i,j,p =
max(w>j x

+
i − bj , 0)

max(w>j x
+
i − bj , 0) +

∑
x∈Ov(p)

∑m
k=1 I(Ck 6= Cj) max(w>k x

+
i − bk, 0)

(8)

Where Ov(p) denotes the set of features for positive patches that contain the pixel p.

It is admittedly difficult to analyze how well these heuristics approximate the adaptive bandwidth
approach of [4], and even there the setting of the bandwidth for each datapoint has heuristic aspects.
However, empirically our approach leads to improvements in performance as discussed below, and
suggests a potential area for future work.

4 Evaluation via Purity-Coverage Plot
Our aim is to discover visual elements that are maximally representative and discriminative. To
measure this, we define two quantities for a set of visual elements: coverage (which captures rep-
resentativeness) and purity (which captures discriminativeness). Given a held-out test set, visual
elements will generate a set of patch detections. We define the coverage of this set of patches to be
the fraction of the pixels from the positive images claimed by at least one patch. We define the purity
of a set as the percentage of the patches that share the same label. For an individual visual element,
of course, there is an inherent trade-off between purity and coverage: if we lower the detection
threshold, we cover more pixels but also increase the likelihood of making mistakes. Hence, we can
construct a purity-coverage curve for a set of elements, analogous to a precision-recall curve. We
could perform this analysis on any dataset containing positive and negative images, but [5] presents
a dataset which is particularly suitable. The goal is to mine visual elements which define the look
and feel of a geographical locale, with a training set of 2,000 Paris Street View images and 8,000
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Figure 4: Coverage versus the number of elements used in the representation. On the left we keep only the
detections with a score higher than the score of the detector’s first error (i.e. purity 1). On the right, we lower
the detection threshold until the elements are 90% pure. Note: this is the same purity and coverage measure for
the same elements as Figure 3, just plotted differently.

non-Paris images, as well as 2,999 of both classes for testing. Purity-coverage curves for this dataset
are shown in Figure 3.

To plot the curve for a given value of purity p, we rank all patches byw>x−b independently for every
element, and select, for a given element, all patches up until the last point where the element has the
desired purity. We then compute the coverage as the union of patches selected for every element.
Because we are taking a union of patches, adding more elements can only increase coverage, but in
practice we prefer concise representations, both for interpretability and for computational reasons.
Hence, to compare two element discovery methods, we must select exactly the same number of
elements for both of them. Different works have proposed different heuristics for selecting elements,
which would make the resulting curves incomparable. Hence, we select elements in the same way
for all algorithms, which approximates an “ideal” selection for our measure. Specifically, we first
fix a level of purity (95%) and greedily select elements to maximize coverage (on the testing data)
for that level of purity. Hence, this ranking serves as an oracle to choose the “best” set of elements
for covering the dataset at that level of purity. While this ranking has a bias toward large elements
(which inherently cover more pixels per detection), we believe that it provides a valuable comparison
between algorithms. Our purity-coverage curves are shown in Figure 3, for the 25 and 200 top
elements, respectively. We can also slice the same data differently, fixing a level of purity for all
elements and varying the number of elements, as shown in Figure 4.

Baselines: We included five baselines of increasing complexity. Our goal is not only to analyze our
own algorithm; we want to show the importance of the various components of previous algorithms
as well. We initially train 20, 000 visual elements for all the baselines, and select the top elements
using the method above. The simplest baseline is “Exemplar LDA,” proposed by [10]. Each cluster
is represented by a hyperplane which maximally separates a single seed patch from the negative
dataset learned via LDA, i.e. the negative distribution is approximated using a single multivariate
Gaussian. To show the effects of re-clustering, “LDA Retrained” takes the top 5 positive-set patches
retrieved in Exemplar LDA (including the initial patch itself), and repeats LDA, separating those 5
from the negative Gaussian. This is much like the well-established method of “query expansion” for
retrieval, and is similar to [12] (although they use multiple iterations of query expansion). Finally,
“LDA Retrained 5 times” begins with elements initialized via the LDA retraining method, and re-
trains the LDA classifier, each time throwing out the previous top 5 used to train the previous LDA,
and selecting a new top 5 from held-out data. This is much like the iterative SVM training of [5],
except that it uses LDA instead of an SVM. Finally, we include the algorithm of [5], which is a
weakly supervised version of [23], except that knn is being used for initialization instead of kmeans.
The iterations of retraining clearly improve performance, and it seems that replacing LDA with an
SVM also gives improvement, especially for difficult elements.

Implementation details: We use the same patch descriptors described in [5] and whiten them fol-
lowing [10]. We mine elements using the online version of our algorithm, with a chunk size of 1000
(200 Paris, 800 non-Paris per batch). We set β ∗λ = t/500 where t is the iteration number, such that
the bandwidth increases proportional to the number of samples. We train the elements for about 200
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Figure 5: For each correctly classified image (left), we show four elements (center) and heatmap of
the locations (right) that contributed most to the classification.

Table 1: Results on MIT 67 scenes
ROI + Gist [19] 26.05 D-Patches [23] 38.10 D-Parts [26] 51.40
MM-scene [30] 28.00 LPR [22] 44.84 IFV [12] 60.77
DPM [17] 30.40 BoP [12] 46.10 BoP+IFV [12] 63.10
CENTRIST [28] 36.90 miSVM [15] 46.40 Ours (no inter-element, §2) 63.36
Object Bank [14] 37.60 D-Patches (full) [23] 49.40 Ours (§3) 64.03
RBoW [18] 37.93 MMDL [27] 50.15 Ours+IFV 66.87

gradient steps after each chunk of mining. To compute αi,j for patch i and detector j, we actually use
scale-space voxels rather than pixels, since a large detection can completely cover a small detection
but not vice versa. Hence, the set of scale-space voxels covered is a 3D box, the width of the bound-
ing box by its height (both discretized by a factor of 8 for efficiency) by 5, covering exactly one
“octave” of scale space (i.e. log2(

√
width ∗ height) ∗ 5 through log2(

√
width ∗ height) ∗ 5 + 4).

For experiments without inter-element communication, we simply set αi,j to .1. Finally, to reduce
the impact of highly redundant textures, we divide αi,j divided by the total number of detections for
element j in the image containing i. Source code will be available online.

5 Scene Classification
Finally, we evaluate whether our visual element representation is useful for scene classification. We
use the MIT Scene-67 dataset [19], where machine performance remains substantially below human
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Ground Truth (GT): deli GT: laundromat GT: corridor Guess: grocery store Guess: closet Guess: staircase 

GT: museum GT: office GT: bakery Guess: garage Guess: classroom Guess: buffet 

Figure 6: Each of these images was misclassified by the algorithm, and the heatmaps explain why.
For instance, it may not be obvious why a corridor would be classified as a staircase, but we can see
(top right) that the algorithm has identified the railings as a key staircase element, and has found no
other staircase elements the image.

performance. For indoor scenes, objects within the scene are often more useful features than global
scene statistics [12]: for instance, shoe shops are similar to other stores in global layout, but they
mostly contain shoes.

Implementation details: We used the original Indoor-67 train/test splits (80 training and 20 testing
images per class). We learned 1600 elements per class, for a total of 107, 200 elements, following
the procedure described above. We include right-left flipped images as extra positives. 5 batches
were sufficient, as this dataset is smaller. We also used smaller descriptors: 6-by-6 HOG cells,
corresponding to 64-by-64 patches and 1188-dimensional descriptors. We again select elements
by fixing purity and greedily selecting elements to maximize coverage, as above. However, rather
than defining coverage as the number of pixels (which is biased toward larger elements), we simply
count the detections, penalizing for overlap: we penalize each individual detection by a factor of
1/(1 + noverlap), where noverlap is the number of detections from previously selected detectors
that a given detection overlaps with. We select 200 top elements per class. To construct our final
feature vector, we use a 2-level (1x1 and 2x2) spatial pyramid and take the max score per detector
per region, thresholded at −.5 (since below this value we do not expect the detection scores to be
meaningful) resulting in a 67,000-dimensional vector. We average the feature vector for the right
and left flips of the image, and classify using 67 one-vs-all linear SVM’s. Note that this differs from
[23], which selects only the elements for a given class in each class-specific SVM.

Figure 5 shows a few qualitative results of our algorithm. Quantitative results and comparisons
are shown in Table 1. We significantly outperform other methods based on discriminative patches,
suggesting that our training method is useful. We even outperform the Improved Fisher Vector
of [12], as well as IFV combined with discriminative patches (IFV+BoP). Finally, although the
optimally-performing representation is dense (about 58% of features are nonzero), it can be made
much sparser without sacrificing much performance. For instance, if we trivially zero-out low-
valued features until fewer than 6% are nonzero, we still achieve 60.45% accuracy.

6 Conclusion
We developed an extension of the classic mean-shift algorithm to density ratio estimation, showing
that the resulting algorithm could be used for element discovery, and demonstrating state-of-the-art
results for scene classification. However, there is still much room for improvement in weakly-
supervised element discovery algorithms. For instance, our algorithm is limited to binary labels, but
image labels may be continuous (e.g., GPS coordinates or dates). Also, our elements are detected
based only on individual patches, but images often contain global structures beyond patches.
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A Optimizing the objective

Algorithm 1 gives a summary of our optimization procedure. We begin by sampling a set of patches
from the positive dataset, and initialize our wj vectors as the features for these patches. We initialize
bj to 0. For simplicity of notation in this section, we append bj to wj and append a −1 to each
feature vector x. We can then “mine” through a set of images for patches where w>j x > 0 for
some j. In practice, it greatly improves computational efficiency to have a separate round of mining
initially on a small set of negative images, where we only update bj to satisfy the constraint of (6).

After a round of mining on a single chunk of the data (including positives and negatives), we set the
α’s according to the procedure described in section 3. We must then optimize the following:

npos∑
i=1

αi,j max(w>j x
+
i , 0)− λ

m∑
j=1

‖[wj ]1:d‖2 s.t.
nneg∑
i=1

max(w>j x
−
i , 0) ≤ β (9)

Here, d is the data dimensionality, and [·]1:d selects the first d components of the vector such that
the bias term is excluded. Note that we can replace the = with a ≤ in the constraint because it does
not affect the solution: a decrease in b will always increase the objective, and hence the inequality
constraint will always be tight at the solution. With this modification, it is straightforward to show
that the constraint defines a convex set. At first glance, Expression (9) seems quite difficult to
optimize, as we are maximizing a non-concave function. It is unlikely that a convex relaxation will
be useful either, because different elements correspond to different local maxima of the objective.
In practice, however, we can approximately optimize (9) directly, and do so efficiently. First, note
that locally the function is a simple quadratic on an affine subspace, as long as wj remains in a
neighborhood where the sign of w>j x does not change for any x. Hence, we perform a form of
projected gradient descent; pseudocode is given in the optimize function of Algorithm 1. We
first compute the gradient of (9) and then find its projection ∇ onto the current affine subspace, i.e.,
the space defined by:

∇>
nneg∑
i=1

x−i I(w>j x
−
i > 0) = 0 (10)

where I is the indicator function. This means that small updates in the direction ∇ will not result
in constraint violations. Next, we perform a line search on w + t∇, where t is the step size that we
search over:

t∗ = arg max
t

npos∑
i=1

αi,j(wj + t∇)>x+i ∗ I(w>j x
+
i ≥ 0)− λ‖[wj + t∇]1:d‖2 (11)

This is a simple quadratic that can be solved analytically. If the maximum t∗ of the line search does
not cause w>j x to change for any x, then we accept this maximum, set wj = wj + t∗∇, and iterate.
Otherwise, we set t equal to a pre-determined fixed constant, and update. If the step causes w>j x

−
i

to change sign for some x−i , however, then we will no longer satisfy the constraint in (9). Ideally, we
would orthogonally project wj onto the constraint set, but finding the correct orthogonal projection
is computationally expensive. Hence, we approximate the projection operator with gradient descent
(with respect to wj) on the expression:∣∣∣∣∣

nneg∑
i=1

max(w>j x
−
i , 0)− β

∣∣∣∣∣ (12)

This procedure is shown in the satisfyConstrains function of Algorithm 1. This function
is piecewise linear, so gradient descent can be performed very efficiently. If the path of gradient
descent is a straight line (i.e. for no x does w>x change sign) then this will be a proper projection,
but otherwise it is an approximation. In practice we run the optimization on a fixed computational
budget for each element, since in practice we find that learning more elements is more useful than
optimizing individual elements more exactly.
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Algorithm 1: Discriminative Mode Seeking Pseudocode
Data: I+, I−: positive and negative image sets
Initialize W = [w1, ..., wm] as random patches from positive images, with the last (bias) row 0
Initialize B = [b1, ..., bm] by running W on a subset of I− and finding b’s that satisfy 3
Set the last row of W equal to B.
Distribute I+ and I− evenly into l sets, I1, ..., IL
for l← 1 to L do

Mine for patches x in Il for which any of W>x > 0
for j ← 1 to m do

X ← the set of x for which w>j x > 0
[wj ]← optimize(wj , X)

end
end

Function optimize(w,X)
X+, X− ← Positive and negative examples from X, respectively;
while not converged and not timed out do
5←

∑
x∈X+,w>x>0 x− 2 ∗ λ‖[w]1:d‖x ; // Gradient of objective

Π←
∑

x∈X−,w>x>0 x; // Gradient of constraint

5← (Π∇>Π)/‖Π‖2; // Project 5 to be orthogonal to Π
w ← w + t ∗ 5; // take a step of size t (see text)
w ← satisfyConstraints(w,X−);

end
return w;

Function satisfyConstraints(w,X−)
while constraint is not satisfied do

Π← sum of x ∈ X− where w>x > 0; // Gradient of constraint
δ ← min δ such that the sign of (w − δ ∗Π)>x changes for some x ∈ X−;
if some δ0 < δ makes (w − δ0 ∗Π) satisfy the constraint then

δ ← δ0;
end
w ← w − δ ∗Π;

end
return w;
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