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Abstract

Many recent object retrieval systems rely on local fea-
tures for describing an image. The similarity between a
pair of images is measured by aggregating the similarity
between their corresponding local features. In this paper
we present a probabilistic framework for modeling the fea-
ture to feature similarity measure. We then derive a query
adaptive distance which is appropriate for global similar-
ity evaluation. Furthermore, we propose a function to score
the individual contributions into an image to image similar-
ity within the probabilistic framework. Experimental results
show that our method improves the retrieval accuracy sig-
nificantly and consistently. Moreover, our result compares
favorably to the state-of-the-art.

1. Introduction
We consider the problem of content-based image re-

trieval for applications such as object recognition or simi-
lar image retrieval. This problem has applications in web
image retrieval, location recognition, mobile visual search,
and tagging of photos.

Most of the recent state-of-the-art large scale image re-
trieval systems rely on local features, in particular the SIFT
descriptor [14] and its variants. Moreover, these descrip-
tors are typically used jointly with a bag-of-words (BOW)
approach, reducing considerably the computational burden
and memory requirements in large scale scenarios.

The similarity between two images is usually expressed
by aggregating the similarities between corresponding lo-
cal features. However, to the best of our knowledge, few
attempts have been made to systematically analyze how to
model the employed similarity measures.

In this paper we present a probabilistic view of the fea-
ture to feature similarity. We then derive a measure that is
adaptive to the query feature. We show - both on simulated
and real data - that the Euclidean distance density distribu-
tion is highly query dependent and that our model adapts
the original distance accordingly. While it is difficult to
know the distribution of true correspondences, it is actu-

ally quite easy to estimate the distribution of the distance of
non-corresponding features. The expected distance to the
non-corresponding features can be used to adapt the origi-
nal distance and can be efficiently estimated by introducing
a small set of random features as negative examples. Fur-
thermore, we derive a global similarity function that scores
the feature to feature similarities. Based on simulated data,
this function approximates the analytical result.

Moreover, in contrast to some existing methods, our
method does not require any parameter tuning to achieve its
best performance on different datasets. Despite its simplic-
ity, experimental results on standard benchmarks show that
our method improves the retrieval accuracy consistently and
significantly and compares favorably to the state-of-the-art.

Furthermore, all recently presented post-processing
steps can still be applied on top of our method and yield
an additional performance gain.

The rest of this paper is organized as follows. Section 2
gives an overview of related research. Section 3 describes
our method in more detail. The experiments for evaluating
our approach are described in Section 4. Results in a large
scale image retrieval system are presented in Section 5 and
compared with the state-of-the-art.

2. Related Work
Most of the recent works addressing the image similar-

ity problem in image retrieval can be roughly grouped into
three categories.
Feature-feature similarity The first group mainly works
on establishing local feature correspondence. The most fa-
mous work in this group is the bag-of-words (BOW) ap-
proach [24]. Two features are considered to be similar if
they are assigned to the same visual word. Despite the effi-
ciency of the BOW model, the hard visual word assignment
significantly reduces the discriminative power of the local
features. In order to reduce quantization artifacts, [20] pro-
posed to assign each feature to multiple visual words. In
contrast, [8] rely on using smaller codebooks but in con-
junction with short binary codes for each local feature, re-
fining the feature matching within the same Voronoi cell.
Additionally, product quantization [12] was used to esti-
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mate the pairwise Euclidean distance between features, and
the top k nearest neighbors of a query feature is considered
as matches. Recently, several researchers have addressed
the problem of the Euclidean distance not being the optimal
similarity measure in most situations. For instance in [16],
a probabilistic relationship between visual words is learned
from a large collection of corresponding feature tracks. Al-
ternatively, in [21], they learn a projection from the original
feature space to a new space, such that Euclidean metric in
this new space can appropriately model feature similarity.

Intra-image similarity The second group focuses on effec-
tively weighting the similarity of a feature pair considering
its relationship to other matched pairs.

Several authors exploit the property that the local fea-
tures inside the same image are not independent. As a
consequence, a direct accumulation of local feature sim-
ilarities can lead to inferior performance. This problem
was addressed in [4] by down-weighting the contribution
of non-incidentally co-occurring features. In [9] this prob-
lem was approached by re-weighting features according to
their burstiness measurement.

As the BOW approach discards spatial information, a
scoring step can be introduced which exploits the property
that the true matched feature pairs should follow a consis-
tent spatial transformation. The authors of [19] proposed
to use RANSAC to estimate the homography between im-
ages, and only count the contribution of feature pairs con-
sistent with this model. [26] and [23] propose to quantize
the image transformation parameter space in a Hough vot-
ing manner, and let each matching feature pair vote for its
correspondent parameter cells. A feature pair is considered
valid if it supports the cell of maximum votes.

Inter-image similarity Finally, the third group addresses
the problem of how to improve the retrieval performance by
exploiting additional information contained in other images
in the database, that depict the same object as the query im-
age. [5] relies on query expansion. That is, after retrieving
a set of spatially verified database images, this new set is
used to query the system again to increase recall. In [22],
a set of relevant images is constructed using k-reciprocal
nearest neighbors, and the similarity score is evaluated on
how similar a database image is to this set.

Our work belongs to the first group. By formulating the
feature-feature matching problem in a probabilistic frame-
work, we propose an adaptive similarity to each query fea-
ture, and a similarity function to approximate the quanti-
tative result. Although the idea of adapting similarity by
dissimilarity has already been exploited in [11][17], we pro-
pose to measure dissimilarity by mean distance of the query
to a set of random features, while theirs use k nearest neigh-
bors (kNN). According to the fact that, in a realistic dataset,
different objects may have different numbers of relevant im-

ages, it is actually quite hard for the kNN based method to
find an generalized k for all queries. Moreover, as kNN is an
order statistic, it could be sensitive to outliers and can’t be
used reliably as an estimator in realistic scenarios. In con-
trast, in our work, the set of random features could be con-
sidered as a clean set of negative examples, and the mean
operator is actually quite robust as shown later.

Considering the large amount of data in a typical large
scale image retrieval system, it is impractical to compute
the pairwise distances between high-dimensional original
feature vectors. However, several approaches exist to re-
lieve that burden using efficient approximations such as
[12, 13, 3, 6]. For simplicity, we adopt the method proposed
in [12] to estimate the distance between features.

3. Our Approach
In this section, we present a theoretical framework for

modeling the visual similarity between a pair of features,
given a pairwise measurement. We then derive an analytical
model for computing the accuracy of the similarity estima-
tion in order to compare different similarity measures. Fol-
lowing the theoretical analysis, we continue the discussion
on simulated data. Since the distribution of the Euclidean
distance varies enormously from one query feature to an-
other, we propose to normalize the distance locally to ob-
tain similar degree of measurement across queries. Further-
more, using the adaptive measure, we quantitatively analyze
the similarity function on the simulated data and propose a
function to approximate the quantitative result. Finally, we
discuss how to integrate our findings into a retrieval system.

3.1. A probabilistic view of similarity estimation

We are interested in modeling the visual similarity be-
tween features based on a pairwise measurement.

Let us denote as xi the local feature vectors from a query
image and as Y = {y1, ..., yj , ..., yn} a set of local fea-
tures from a collection of database images. Furthermore,
let m(xi, yj) denote a pairwise measurement between xi
and yj . Finally T (xi) represents the set of features which
are visually similar to xi, and F (xi) as the set of features
which are dissimilar to xi. Instead of considering whether
yj is similar to xi and how similar they look, we want to
evaluate how likely yj belongs to T (xi) given a measure
m. This can be modeled as follows

f(xi, yj) = p(yj ∈ T (xi) | m(xi, yj)) (1)

For simplicity, we denote mj = m(xi, yj), Ti = T (xi),
and Fi = F (xi). As yj either belongs to Ti or Fi, we have

p(yj ∈ Ti | mj) + p(yj ∈ Fi | mj) = 1 (2)

Furthermore, according to the Bayes Theorem

p(yj ∈ Ti | mj) =
p(mj | yj ∈ Ti)× p(yj ∈ Ti)

p(mj)
(3)



and

p(yj ∈ Fi | mj) =
p(mj | yj ∈ Fi)× p(yj ∈ Fi)

p(mj)
(4)

Finally, by combining Equations 2, 3 and 4 we get

p(yj ∈ Ti | mj) =

(
1 +

p(mj | yj ∈ Fi)

p(mj | yj ∈ Ti)
× p(yj ∈ Fi)

p(yj ∈ Ti)

)−1
(5)

For large datasets the quantity p(yj ∈ Ti) can be modeled
by the occurrence frequency of xi. Therefore, p(yj ∈ Ti)
and p(yj ∈ Fi) only depend on the query feature xi.

In contrast, p(mj | yj ∈ Ti) and p(mj | yj ∈ Fi) are
the probability density functions of the distribution of mj ,
for {yj | y ∈ Ti} and {yj | y ∈ Fi}. We will show in
Section 3.3, how to generate simulated data for estimating
these distributions. In Section 3.5 we will further exploit
these distributions in our framework.

3.2. Estimation accuracy

Since the pairwise measurement between features is the
only observation for our model, it is essential to estimate
its reliability. Intuitively, an optimal measurement should
be able to perfectly separate the true correspondences from
the false ones. In other words, the better the measurement
distinguishes the true correspondences from the false ones,
the more accurately the feature similarity based on it can
be estimated. Therefore, the measurement accuracy can be
modeled as the expected pureness. Let T be a collection of
all matched pairs of features, i.e,

T = {(x, y) | y ∈ T (x))} (6)

The probability that a pair of features is a true match given
the measurement value z can be expressed as

p(T | z) = p((x, y) ∈ T | m(x, y) = z) (7)

Furthermore, the probability of observing a measurement
value z given a corresponding feature pair is

p(z | T ) = p(m(x, y) = z | (x, y) ∈ T ) (8)

Then, the accuracy for the similarity estimation is

Acc(m) =

∫ ∞
−∞

p(T | z)× p(z | T )dz (9)

with m some pairwise measurement and Acc(m) the accu-
racy of the model based on m. Since

p(T | z) ≤ 1 and
∫ ∞
−∞

p(z | T )dz = 1 (10)

the accuracy of a measure m is

Acc(m) ≤ 1 (11)

and

Acc(m) = 1⇔ p(T | z) = 1,∀p(z | T ) > 0 (12)

This measure allows to compare the accuracy of different
distance measurements as will be shown in the next section.

3.3. Ground truth data generation

In order to model the property of T (xi), we simulate cor-
responding features using the following method: First, re-
gions ri,0 are detected on a random set of images by the
Hessian Affine detector[15]. Then, we apply numerous ran-
dom affine warpings (using the affine model proposed by
ASIFT [25]) to ri,0, and generate a set of related regions.
Finally, SIFT features are computed on all regions resulting
in {xi,1, xi,2, ..., xi,n} as a subset of T (xi,0).

The parameters for the simulated affine transformation
are selected randomly and some random jitter is added to
model the detection errors occurring in a practical setting.
The non-corresponding featuresF (xi) are simply generated
by selecting 500K random patches extracted from a differ-
ent and unrelated dataset. In this way, we also generate a
dataset D containing 100K matched pairs of features from
different images, and 1M non-matched paris. Figure 1 de-
picts two corresponding image patches randomly selected
from the simulated data.

Figure 1. Corresponding image patches for two randomly selected
points of the simulated data

3.4. Query adaptive distance

It has been observed that the Euclidean distance is not
an appropriate measurement for similarity [21, 16, 11]. We
argue that the Euclidean distance is a robust estimator when
normalized locally.

As an example, Figure 2 depicts the distributions of
the Euclidean distance of the corresponding and non corre-
sponding features for the two different interest points shown
in Figure 1. For each sample point xi, we collected a set of
500 corresponding features T (xi) using the procedure from
Section 3.3 and a set of 500K random non-corresponding
features F (xi). It can be seen, that the Euclidean dis-
tance separates the matching from the non-matching fea-
tures quite well in the local neighborhood of a given query
feature xi.

However, by averaging the distributions of T (xi) and
F (xi) respectively for all queries xi, the Euclidean distance
loses its discriminative power. This explains, why the Eu-
clidean distance has inferior performance in estimating vi-
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Figure 2. Distribution of the Euclidean distance for two points
from the simulated data. The solid lines show the distribution for
corresponding features T (xi), whereas the dotted line depict non-
corresponding ones F (xi).

sual similarity from a global point of view. A local adapta-
tion is therefore necessary to recover the discriminability of
the Euclidean Distance.

Another property can also be observed in Figure 2: if a
feature has a large distance to its correspondences, it also
has a large distance to the non-matching features. By ex-
ploiting this property, a normalization of the distance can
be derived for each query feature

dn(xi, yj) = d(xi, yj)/Nd(xi) (13)

where dn(·, ·) represents the normalized distance, d(·, ·)
represents the original Euclidean distance and Nd(xi) rep-
resents the expected distance of xi to its non-matching fea-
tures. It is intractable to estimate the distance distribution
between all feature and their correspondences, but it is sim-
ple to estimate the expected distance to non-corresponding
features. Since the non-corresponding features are inde-
pendent from the query, a set of randomly sampled, thus
unrelated features can be used to represent the set of non-
correspondent features to each query. Moreover, if we as-
sume the distance distribution of the non-corresponding set
to follow a normal distribution N (µ, σ), then the estima-
tion error of its mean based on a subset follows another
normal distributionN (0, σ/N), with N the size of the sub-
set. Therefore, Nd(xi) can be estimated sufficiently well
and very efficiently from even a small set of random, i.e.
non-corresponding features.

The probability that an unknown feature matches to the
query one when observing their distance z can be modeled
as,

p(T | z) = NT × p(z | T )
NT × p(z | T ) +NF × p(z | F)

= {1 + NF

NT
× p(z | F)
p(z | T )

}−1
(14)

with NT and NF the number of corresponding and non-
corresponding pairs respectively. In practical settings, NF

is usually many orders of magnitude larger thanNT . There-
fore, once p(z | F) starts getting bigger than 0, p(T | z)
rapidly decreases, and the corresponding features would be
quickly get confused with the non-corresponding ones.

Figure 3 illustrates how the adaptive distance recovers
more correct matches compared to the Euclidean distance.

Moreover, by assuming that NF /NT ≈ 1000 the
measurement accuracy following Equation 9 can be com-
puted. For the Euclidean distance, the estimation accuracy
is 0.7291, and for the adaptive distance, the accuracy is
0.7748. Our proposed distance thus significantly outper-
forms the Euclidean distance.

3.5. Similarity function

In this section, we show how to derive a globally appro-
priate feature similarity in a quantitative manner. After hav-
ing established the distance distribution of the query adap-
tive distance in the previous section, the only unknown in
Equation 5 remains p(yj∈Fi)

p(yj∈Ti)
.

As discussed in Section 3.1, this quantity is inversely
proportional to the occurrence frequency of xi, and it is
generally a very large term. Assuming c =

p(yj∈Fi)
p(yj∈Ti)

be-
ing between 10 and 100000, the full similarity function can
be estimated and is depicted in Figure 4.

The resulting curves follow an inverse sigmoid form
such that the similarity is 1 for dn → 0 and 0 if dn → 1.
They all have roughly the same shape and differ approxi-
mately only by an offset. It is to be noted, that they show
a very sharp transition making it very difficult to correctly
estimate the transition point and thus to achieve a good sep-
aration between true and false matches.

In order to reduce the estimation error due to such sharp
transitions, a smoother curve would be desirable. Since the
distance distributions are all long-tailed, we have fitted dif-
ferent kinds of exponential functions to those curves. How-
ever, we observe similar results. For the reason of simplic-
ity, we choose to approximate the similarity function as

f(xi, yj) = exp(−α× dn(xi, yj)4) (15)

As can be seen in Figure 4, this curve is flatter and covers
approximately the full range of possible values for c.

In Equation 15, α can be used to tune the shape of the
final function and roughly steers the slope of our function,
we achieved best results with α = 9 and keep this value
throughout all experiments.

In the next section, the robustness of this function in real
image retrieval system will be evaluated.

3.6. Overall method

In this section we will integrate the query adaptive dis-
tance measurement and the similarity function presented
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Figure 3. The comparison of our adaptive distance to the Euclidean distance on dataset D. The solid lines are the distance distribution of the
matched pairs, and the dotted lines are the distance distribution of non-matched pairs. The green dashed lines denotes where the probability
of the non-matching distance exceed 0.1%, i.e, the non-matching feature is very likely to dominate our observation. A comparison of the
right tails of both distributions is shown in (c).
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Figure 4. Feature similarity evaluated on dataset D. Red lines are
the visual similarity for different c evaluated on the simulated data.
The blue line is our final similarity function with α = 9.

before into an image retrieval system.
Let the visual similarity between the query image q =

{x1, ..., xm} and a database image d = {y1, ..., yn} be

sim(q, d) =

m∑
i=1

n∑
j=1

f(xi, yj) (16)

with f(xi, yj) the pairwise feature similarity as in Equa-
tion 15. As mentioned before, dn(xi, yj) and Nd(xi) are
estimated using the random set of features.

For retrieval, we use a standard bag-of-words inverted
file. However, in order to have an estimation of the pairwise
distance d(xi, yj) between query and database features, we
add a product quantization scheme as in [12] and select the
same parameters as the original author. The feature space
is firstly partitioned into Nc = 20′000 Voronoi cells ac-
cording to a coarse quantization codebook Kc. All features
located in the same Voronoi cell are grouped into the same
inverted list. Each feature is further quantized with respect
to its coarse quantization centroid. That is, the residual be-

tween the feature and its closest centroid is equally split into
m = 8 parts and each part is separately quantized according
to a product quantization codebookKp withNp = 256 cen-
troids. Then, each feature is encoded using its related image
identifier and a set of quantization codes, and is stored in its
corresponding inverted list.

We select random features from Flickr and add 100 of
them to each inverted list. For performance reasons, we
make sure that the random features are added to the inverted
list before adding the database vectors.

At query time, all inverted lists whose related coarse
quantization centers are in the k nearest neighborhood of
the query vector are scanned.

With our indexing scheme, the distances to non-
matching features are always computed first, with their
mean value being directly Nd(xi). Then, the query adap-
tive distance dn(xi, yj) to each database vector can directly
be computed as in Equation 13. In order to reduce un-
necessary computation even more, a threshold β is used
to quickly drop features whose Euclidean distance is larger
than β × Nd(xi). This parameter has little influence on the
retrieval performance, but reduces the computational load
significantly. Its influence is evaluated in Section 4.

As pointed out by [9], local features of an image tend to
occur in bursts. In order to avoid multiple counting of statis-
tically correlated features, we incorporate both “intra bursti-
ness” and “inter burstiness” normalization [9] to re-weight
the contributions of every pair of features. The similarity
function thus changes to

sim(q, d) =

m∑
i=1

n∑
j=1

w(xi, yj)f(xi, yj) (17)

with w(xi, yj) the burstiness weighting.



4. Experiments
In this part, we first introduce the evaluation protocol.

Then we give some implementation details of our algo-
rithm. Furthermore, we discuss the influence of each pa-
rameter and experimentally select the best ones. Finally, we
evaluate each part of our method separately.

4.1. Datasets and performance evaluation protocol

We evaluated our method on the Oxford5k[19],
Paris[20], Holidays[8] and Oxford105k dataset. Ox-
ford105k consists of Oxford5k and 100285 distractor im-
ages. The 100285 distractor images are a set of random
images that we downloaded from Flickr having the same
resolution of 1024× 768 as the original Oxford5k dataset.

We follow the same evaluation measurement method as
proposed in the original publications, that is, the mean av-
erage precision (mAP) is calculated as the overall perfor-
mance of the retrieval system.

4.2. Implementation details

Preprocessing For all experiments, all images are resized
such that their maximum resolution is 1024× 768. In each
image, interest points are detected using the Hessian Affine
detector and a SIFT descriptor is computed around each
point. As in [2] a square root scaling is applied to each SIFT
vector, yielding a significantly better retrieval performance
when using the Euclidean metric.
Codebook training The vocabularies were trained on an
independent dataset of images randomly downloaded from
Flickr in order to prevent overfitting to the datasets.
Random feature dataset preparation Random images
from Flickr (however different from the codebook training
dataset) are used to generate the random feature dataset.

4.3. Parameter selection

In this section, we evaluate the retrieval performance of
our approach on the Oxford5K dataset for different settings
of parameters. There are two parameters in our method: the
number of random features in each inverted list, and the cut-
off threshold β for filtering out features whose contribution
is negligible.
The influence of the number of the random features Ta-
ble 1 shows the retrieval performance by varying the num-
ber of random features for each inverted list. The perfor-
mance remains almost constant for a very large range of
number of random features. This supports the assumption,
that the mean distance of a query feature to the dissimilar
features can be robustly estimated even with a small num-
ber of random features. We select 100 random features per
inverted list throughout the rest of this paper.
The influence of the cut-off threshold β Table 2 shows
that features with a distance larger than β × Nd(xi) with

Length 50 100 500 1000 10000
mAP 0.739 0.739 0.739 0.739 0.738

Table 1. Influence of the size of the random feature set for each
inverted list on Oxford5k

β 0.80 0.85 0.9 0.95
similarity score 0.025 0.009 0.003 0.001
#selected features 13 43 124 292
mAP 0.733 0.739 0.740 0.739

Table 2. Influence of the cut-off value β on Oxford5k

β ∈ [0.8, 0.95] have almost no contribution to the retrieval
performance. In order to reduce the number of updates of
the scoring table, we select β = 0.85 for all experiments.

4.4. Effectiveness of our method

Local adaptive distance In order to compare the adap-
tive distance function to the Euclidean distance, we use a
threshold for separating matching and non-matching fea-
tures. Figure 4.4 shows the retrieval performance for a vary-
ing threshold both for the Euclidean distance as well as for
the adaptive distance. Overall, the best mAP using the adap-
tive distance is 3% better than the Euclidean distance. Fur-
thermore, the adaptive distance is less sensitive when se-
lecting a non-optimal threshold. It is to be noted that in the
final setup, our method does not require any thresholding.
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Figure 5. Comparison of our adaptive distance with Euclidean dis-
tance on Oxford5k dataset

Contributions of other steps In order to justify the contri-
bution of other steps that are contained in our method, we
evaluate the performance of our method by taking them out
of the pipeline. For the experiment on Oxford5k, we find
out that without the feature scaling, mAP will drop from
0.739 to 0.707, while without burstiness weighting, mAP
will drop to 0.692. With multi-assignment only on the query
side, mAP can increase from 0.739 to 0.773 for MA = 5,
and 0.780 for MA = 10. MA denotes the number of in-
verted lists that are traversed per query feature.



5. Results
Throughout all experiments, the set of parameters was

fixed to the values obtained in the previous section and
vocabularies were trained always on independent datasets.
Table 3 shows the retrieval performance on all typical
benchmarks both with single assignment (SA) and multi-
assignment (MA = 10). As expected, multi-assignment
(scanning of several inverted lists) reduces the quantization
artifacts and improves the performance consistently, how-
ever, in exchange for more computational load.

Furthermore, we applied an image level post-processing
step on top of our method. We choose to use reciprocal
nearest neighbors (RNN) [22], for the reason that it can be
easily integrated on top of a retrieval system independently
from the image similarity function. We adopt the publicly
available code [1] provided by the original authors and the
default settings. RNN significantly improves the results on
Oxford5K and Paris datasets, but slightly lowers the result
on Holidays. Considering that RNN tries to exploit addi-
tional information contained in other relevant database im-
ages, which are scarce in Holidays (in average only 2 to 3
relevant database images per query), it is difficult for query
expansion methods to perform much better.

Dataset SA MA MA + RNN
Oxford5k 0.739 0.780 0.850
Oxford105k 0.678 0.728 0.816
Paris 0.703 0.736 0.855
Holidays 0.814 0.821 0.801

Table 3. Performance of our method on public datasets.

5.1. Comparison with state-of-the-art
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We first compare the performance of our method to [12]
which relies on using the top k nearest neighbors of the
Euclidean distance for selecting the similar features of a

query. This work is closest to ours, both in memory over-
head and computational complexity. It can be seen in Fig-
ure 6, that no single k maximizes the performance for all
datasets, showing that this parameter is very sensitive to the
data. Moreover, our method outperforms the peak results
from [12] consistently by roughly 10 points of mAP.

Table 4 shows the comparison to several other methods
without applying any image-level post-processing step. As
pointed out by [10], training a vocabulary on independent
data rather than the evaluated dataset itself can better rep-
resent the search performance in a very large dataset. We
only compare to state-of-the-art methods using codebooks
trained on independent datasets. We achieve the best per-
formance for Oxford5k, Oxford105k, and Holidays and fall
only slightly behind [16] on Paris.

Dataset Ours [16] [7] [18]
Oxford5k 0.780 0.742 0.704 0.725
Oxford105k 0.728 0.675∗ - 0.652
Paris 0.736 0.749 - -
Holidays 0.821 0.749∗∗ 0.817 0.769/0.818∗∗

Table 4. Comparisons with state-of-the-art methods without apply-
ing image level post-processing. ∗ indicates the score of merging
Oxford5k and Paris and 100K distractor images. ∗∗ denotes the
result obtained by manually rotating all images in the Holidays
dataset to be upright.

Furthermore, Table 5 gives a comparison for the results
when additional image-level post-processing steps are ap-
plied. We argue, that any post-processing step can directly
benefit from our method and illustrate with RNN as exam-
ple that the best performance can be achieved.

Dataset Ours+RNN [16] [18] [2]
Oxford5k 0.850 0.849 0.822 0.809
Oxford105k 0.816 0.795 0.772 0.722
Paris 0.855 0.824 - 0.765
Holidays 0.801 0.758∗∗ 0.78 -

Table 5. Comparisons with the state of art methods with post-
processing in image level. ∗∗ denotes the result obtained by man-
ually rotating all images in the Holidays dataset to be upright.

In all of the previous experiments, each feature costs 12
bytes of memory. Specifically, 4 bytes is used for the image
identifier and 8 bytes for the quantization codes. As [11]
mainly show results using more bytes for feature encoding,
we also compare our method to theirs with more bytes per
feature. As shown in Table 6, using more bytes further im-
proves the retrieval results. Even with less bytes than [11],
better performance is achieved on all datasets.

In all experiments, we compare favorably to the state-
of-the-art by exploiting a simple similarity function without
any parameter tuning for each dataset. The good results



Dataset Ours Ours [11]
Bytes 12 36 44
Oxford5k 0.780 0.831 0.764
Paris 0.736 0.756 0.728
Holidays 0.821 0.844 0.844

Table 6. Comparison to [11] using more bytes per feature.

justify our previous analysis and the effectiveness of our
method.

5.2. Computational Complexity

In a small scale experiment, e.g for Oxford5k, we ob-
serve that our method is 30% faster than the original prod-
uct quantization algorithm[12] while traversing the inverted
lists, for the reason that our method requires no heap struc-
ture. However, for a large scale experiment, we observe
similar timing of our method to theirs as each inverted list
contains a very long list of database features, and thus the
computation of the Euclidean distance will dominate the
computational time.

6. Conclusion
In this paper, we present a probabilistic framework for

the feature to feature similarity for high-dimensional local
features such as SIFT. We then propose a query adaptive
feature to feature distance measurement and derive a global
image to image similarity function. Despite the simplicity
of this approach, it achieves consistently good results on
all evaluated datasets, supporting the validity of our model.
Furthermore, it does not require parameter tuning to achieve
optimal performance.
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