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Abstract. We are interested in large-scale image classification and especially
in the setting where images corresponding to new or existing classes are con-
tinuously added to the training set. Our goal is to devise classifiers which can
incorporate such images and classes on-the-fly at (near) zero cost. We cast this
problem into one of learning a metric which is shared across all classes and ex-
plore k-nearest neighbor (k-NN) and nearest class mean (NCM) classifiers. We
learn metrics on the ImageNet 2010 challenge data set, which contains more than
1.2M training images of 1K classes. Surprisingly, the NCM classifier compares
favorably to the more flexible k-NN classifier, and has comparable performance
to linear SVMs. We also study the generalization performance, among others by
using the learned metric on the ImageNet-10K dataset, and we obtain competi-
tive performance. Finally, we explore zero-shot classification, and show how the
zero-shot model can be combined very effectively with small training datasets.

1 Introduction

In the last decade we have witnessed an explosion in the amount of images and videos
that are digitally available, e.g . in broadcasting archives or social media sharing web-
sites. Only a small fraction of this data is consistently annotated and thus scalable meth-
ods are needed for annotation and retrieval to efficiently access this huge volume of data.
This need has been recognized in the computer vision research community and large-
scale methods have become an active topic of research in recent years, see among oth-
ers [1,2,3,4,5,6,7,8,9,10]. The introduction of the ImageNet dataset [1], which contains
more than 14M manually labeled images of 22K classes, has provided an important
benchmark for large-scale image classification and annotation algorithms.

In this paper we focus on the problem of large-scale image annotation, where the
goal is to assign automatically a set of relevant labels to an image, e.g . names of objects
appearing in the image. The predominant approach to this problem is to treat it as a
classification problem. To ensure scalability, often linear classifiers such as SVMs are
used [8,10], sometimes in combination with dimension reduction techniques to speed-
up the classification [7]. Recently, impressive results have been reported on 10,000 or
more classes [3,7,8,11]. A drawback of these methods, however, is that when images of
new categories become available, new classifiers have to be trained at a relatively high
computational cost.
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Many real-life large-scale datasets are open-ended and dynamic: new classes appear
over time and new photos/videos are continuously added to existing classes. Therefore,
the main objective of our work is to propose and study approaches which enable the ad-
dition of new classes and new images to existing classes at (near) zero cost. We explore
two techniques to do so. The first is k-NN classification, where images of new classes
are added in the database, and can be used for classification without further processing.
This is a highly non-linear and non-parametric classifier that has shown competitive per-
formance for image annotation [3,7,12]. Its main drawback is that the nearest neighbor
search for classification is computationally demanding for large and high-dimensional
datasets. The second is the nearest class mean classifier (NCM), where classes are rep-
resented by their mean feature vector [13,14,15]. The cost of computing the mean can
be neglected with respect to the cost of feature extraction and this operation does not
require accessing images of other classes. Contrary to the k-NN classifier, this is a linear
classifier which leads to efficient classification. The complete distribution of the train-
ing data of a class is, however, only characterized by its mean and it is therefore unclear
whether this is sufficient for competitive performance.

The success of both methods critically depends on the metric which is used to com-
pute the distance between an image and other images (for k-NN) or class means (for
NCM), see Figure 1 for an illustration. Metric learning has received much attention in
the machine learning and computer vision communities recently, and has been shown to
significantly increase the performance of distance-based classifiers. Therefore, we cast
our classifier learning problem as one of learning a metric which is shared across all
classes. For k-NN classification, we use the Large Margin Nearest Neighbor (LMNN)
framework [16] and propose a variation that significantly improves its performance. For
the NCM classifier, we propose a novel metric learning algorithm based on multi-class
logistic discrimination. A sample from a given class is enforced to be closer to its class
mean than to any other class mean in the projected space. To apply these metric learn-
ing techniques on large-scale datasets, we employ stochastic gradient descend (SGD)
algorithms, which access only a small fraction of the training data at each iteration [17].
To allow metric learning on high-dimensional image features of large scale datasets that
are too large to fit in memory, we in addition use product quantization [18], a data com-
pression technique that was recently used with success for large-scale image retrieval
[6] and classifier training [8].

We report experiments on the ImageNet Large Scale Visual Recognition Challenge
2010 (ILSVRC’10) dataset, which consists of 1.2M train images of 1,000 classes. As
a baseline approach, we use the setup of the winning entry in the 2011 edition of the
challenge [8]: Fisher vector image representations [19] are used to describe images and
one-vs-rest linear SVM classifiers are learned independently for each class. Surpris-
ingly, we find that the NCM classifier outperforms the more flexible k-NN classifier.
Moreover, the NCM classifier performs on par with the SVM baseline. We also con-
sider the generalization performance to new classes. In a first experiment, we train the
metric on a subset of classes of ILSVRC’10 and include the held-out classes at test
time. We only observe a small drop in performance compared to the experiment where
the metric is learned with all classes. In a second experiment, we train the metric on
ILSVRC’10 and apply it to a larger set of 10K ImageNet classes. Once the metric is
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Fig. 1. The nearest classes for three reference classes using the the `2 and Mahalanobis metric
learned for the NCM classifier. Class probabilities are given for a simulated image signature that
equals the mean of the reference class, see Section 4.3 for details.

learned, we can learn the 10K classifiers (i.e . compute their means) on 64K dimensional
features in less than an hour on a single CPU, while learning one-vs-rest linear SVMs
on the same data takes on the order of 280 CPU days. Finally, we explore a zero-shot
setting where the class mean of novel classes are estimated based on related classes
in the ImageNet hierarchy. We show that the zero-shot class mean can be effectively
combined with the empirical mean of a small number of training images. This provides
an approach that smoothly transitions from settings without training data to ones with
abundant training data.

The rest of the paper is organized as follows. In Section 2 we discuss a selection
of related work which is most relevant to this paper. In Section 3 we present the metric
learning techniques we explored for the k-NN and NCM classifiers. We then present
extensive experimental results in Section 4, followed by our conclusions in Section 5.

2 Related Work

In this section we discuss some of the most relevant work on large-scale image annota-
tion, metric learning, and transfer learning.

Large-scale image annotation. The ImageNet dataset [1] has been a catalyst for re-
search on large-scale image annotation. The current state-of-the-art [8,10] uses effi-
cient linear SVM classifiers trained in a one-vs-rest manner in combination with high-
dimensional bag-of-word [20] or Fisher vector representations [19]. Besides one-vs-rest
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training, large-scale ranking-based formulations have also been explored in [7]. Inter-
estingly, this approach performs joint classifier learning and dimensionality reduction
of the image features. Operating in a lower-dimensional space acts as a regularization
during learning and reduces the cost of classifier evaluation at test time. The proposed
NCM approach also learns low-dimensional projection matrices but the weight vectors
are constrained to be the class means. This allows the efficient addition of novel classes.

In [3,7] k-NN classifiers were found to be competitive with linear SVM classifiers
in a very large-scale setting involving 10,000 or more classes. The drawback of k-NN
classifiers, however, is that they are expensive in storage and computation, since in
principle all training data needs to be kept in memory and accessed to classify new
images. The storage issue is also encountered when SVM classifiers are trained since
all training data needs to be processed in multiple passes. Product quantization (PQ)
was introduced in [6] as a lossy compression mechanism for local SIFT descriptors in a
bag-of-features image retrieval system. It has been subsequently used to compress bag-
of-word and Fisher vector image representations in the context of image retrieval [9]
and classifier training [8]. We also exploit PQ in our work to compress high-dimensional
image signatures when learning our metrics.

Metric learning. Here, we only discuss methods that learn metrics for image classifi-
cation problems. Other methods aim at learning metrics for verification problems and
essentially learn binary classifiers that threshold the learned distance to decide whether
two images belong to the same class or not, see e.g . [21].

Among those methods that learn metrics for classification, the Large Margin Nearest
Neighbor (LMNN) approach of [16] is specifically designed to support k-NN classifi-
cation. It tries to ensure that for each image its predefined set of target neighbors from
the same class are closer than samples from other classes. Since the cost function is
defined over triplets of points —that can be sampled in an SGD training procedure—
this method can scale to large datasets. In [16] the set of target neighbors is chosen and
fixed using the `2 metric in the original space, that can be problematic as this distance
is far from being ideal, see e.g . Figure 1. Therefore, we propose two variants of LMNN
that avoid using such a pre-defined set of target neighbors, both leading to significant
improvements.

The large margin nearest local mean classifier [22] assigns a test image to a class
based on its distance to the mean of its nearest neighbors in each class. This method was
reported to outperform LMNN but requires computing all pairwise distances between
training instances and therefore does not scale well to large datasets. Similarly, TagProp
[12] suffers from the same problem. It consists in assigning weights to training samples
based on their distance to the test instance and in computing the class prediction by the
total weight of samples of each class in a neighborhood. Because of their poor scaling
properties, we do not consider these methods in our experiments.

Closely related to our metric learning approach for the NCM classifier is the LESS
model of [14]. They learn a diagonal scaling matrix to modify the `2 distance by rescal-
ing the data dimensions, and include an `1 penalty on the weights to perform feature
selection. However, in their case, NCM is used to address small sample size problems
in binary classification, i.e . cases where there are fewer training points (tens to hun-
dreds) than features (thousands). Our approach differs significantly in that (i) we work
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Metric Learning for Large Scale Image Classification 5

in a multi-class setting and (ii) we learn a low-dimensional projection which allows ef-
ficiency in large-scale. The method of [15] is also related to our method since they use
a NCM classifier and an `2 distance in a subspace that is orthogonal to the subspace
with maximum within-class variance. However, their technique involves computing the
first eigenvectors of the within-class covariance matrix, which has a computational cost
between O(D2) and O(D3), which again is undesirable for high-dimensional feature
vectors. Moreover, this metric is heuristically obtained, rather than directly optimized
for maximum classification performance.

Transfer learning. The term transfer learning is used to refer to methods that share in-
formation across classes during learning. Examples include the use of part-based or at-
tribute class representations. Part-based object recognition models [23] define an object
as a spatial constellation of parts, and share the part detectors across different classes.
Attribute-based models [24] characterize a category (e.g . animal) by a combination
of attributes (e.g . yellow, stripes, carnivore), and share the attribute classifiers across
classes. Other approaches include biasing the weight vector learned for a new class
towards the weight vectors of classes that have already been trained [25]. Zero-shot
learning [26] is an extreme case of transfer learning where for a new class no training
instances are available but a description is provided in terms of parts, attributes, or other
relations to already seen classes. In [5] various transfer learning methods were evalu-
ated in a large-scale setting using the ILSVRC’10 dataset. They found transfer learning
methods to have little added value when training images are available for all classes.
In contrast, transfer learning was found to be effective in a zero-shot learning setting,
where classifiers were trained for 800 classes, and performance was tested in a 200-way
classification across the held-out classes.

In this paper we also aim at transfer learning, in the sense that we allow only a trivial
amount of processing on the data of new classes (storing in a database, or averaging),
and rely on a metric that was trained on other classes to recognize the new ones. In
contrast to most work on transfer learning, we do not use any intermediate representa-
tion in terms of parts or attributes, nor do we train classifiers for the new classes. While
also considering zero-shot learning, we further evaluate performance when combining
a zero-shot model inspired by [5] with progressively more training images per class,
from one up to thousands. We find that the zero-shot model provides an effective prior
when a small amount of training data is available.

3 Learning Metrics to Generalize to New Categories

In this section we discuss metric learning for the k-NN and NCM classifiers. We learn
Mahalanobis distances of the form (x − x′)>M(x − x′) to improve classification
accuracy, where x ∈ IRD. We focus on low-rank metrics with M = W>W and
W ∈ IRd×D, where d ≤ D acts as regularizer and improves efficiency for computation
and storage. The Mahalanobis distance induced by W is equivalent to the `2 distance
after projection:

‖ x− x′ ‖2W = (x− x′)>W>W (x− x′) =‖Wx−Wx′ ‖2 . (1)
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6 T. Mensink, J. Verbeek, F. Perronnin and G. Csurka

3.1 Metric Learning for k-NN Classification

K-NN classification is essentially a ranking problem, which is reflected in the metric
learning approach of LMNN [16]. Their learning objective is based on triplets of im-
ages, where the distance between a query image q and a target image p of the same
class should be smaller than the distance to a negative image n of a different class. The
0/1-loss for such a triplet is upper-bounded by the hinge-loss on the distance difference:

Lqpn =
[
1+ ‖ xq − xp ‖2W − ‖ xq − xn ‖2W

]
+
, (2)

which is zero if the negative image n is at least one distance unit farther from the query
q than the positive image p, and positive otherwise. The sum of the per-triplet loss is
the final learning criterion:

L =
N∑

q=1

∑
p∈Pq

∑
n∈Nq

Lqpn, (3)

where Pq and Nq denote the set of positive and negative images for a query image xq .
The sub-gradient of the loss is obtained as:

∇WL =
N∑

q=1

∑
p∈Pq

∑
n∈Nq

∇WLqpn, (4)

∇WLqpn = [[Lqpn > 0]]2W
(
(xq − xp)(xq − xp)> − (xq − xn)(xq − xn)>

)
, (5)

where we use Iversons bracket notation [[·]] that equals one if its argument is true, and
zero otherwise.

In LMNN the set of targets Pq for a query q is set to the query’s k nearest neighbors
from the same class, using the `2 distance. The rationale is the following one: if we can
ensure that these targets are closer than the instances of the other classes, then the k-NN
classification will succeed. In practice, however, it is not always possible to achieve
this situation with a given set of target neighbors, since it implicitly assumes that the `2
distance in the original space is a good similarity measure. Therefore, we consider two
alternatives to using a fixed set of target neighbors:

– First, we can set Pq to contain all images with the same class label as q. This
is similar to [2] where the same type of loss was used to learn image similarity
defined as the scalar product between images after a learned linear projection.

– Second, we can define Pq dynamically to contain the k images of the same class
that are closest to q using the current metric. This option corresponds to minimizing
the loss function also with respect to the choice of Pq . Hence, different target neigh-
bors can be selected, that are closer than the original ones according to the current
metric. A similar approach has been proposed in [16], where every T iterations Pq

is redefined using target neighbors according to the current metric.

Since the number of possible triplets tends to be large for any of these strategies3,
at each SGD iteration we generate triplets from a limited set of m� N images.

3 Even if we disregard the set of target neighbors, each query image is paired with all images
of other classes. Thus, if we have N training images evenly distributed among C classes, this
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Metric Learning for Large Scale Image Classification 7

3.2 Metric Learning for the Nearest Class Mean Classifier

We formulate the NCM classifier using multi-class logistic regression and define the
probability for a class c given an image feature vector x as:

p(c|x) =
exp− ‖ µc − x ‖2W∑C

c′=1 exp− ‖ µc′ − x ‖2W
, (6)

where µc is the mean for class c ∈ {1, . . . , C}. Our objective is to minimize the negative
log-likelihood of the ground-truth class labels yi ∈ {1, . . . , C} of the training images:

L = − 1
N

N∑
i=1

ln p(yi|xi). (7)

The gradient of this objective function is easily verified to be:

∇WL =
2
N

N∑
i=1

C∑
c=1

(
[[yi = c]]− p(c|x)

)
W (µc − xi)(µc − xi)>. (8)

To learn the projection matrix W , we use SGD training and sample at each iteration a
fixed number of m training images to estimate the gradient.

Note that the NCM classifier is linear in x since we assign an image x to the class
c∗ with minimum distance:

c∗ = arg min
c

{
‖ x− µc ‖2W

}
= arg min

c

{
‖Wµc ‖2 −2µ>c (W>W )x

}
. (9)

This observation shows that our classifier can be related to the WSABIE method of [7].
In the latter paper, a class c is scored using fc(x) = v>c Wx, where W projects the
image into a lower-dimensional space, and vc is a class specific weight vector learned
from data. However, we enforce that vc = Wµc, which allows us to add new classes
without the need to learn vc from labeled data and therefore at almost zero cost.

Note that our classifier can also be related to the solution of ridge-regression, or
regularized linear least-squares regression. Let fc(xi) = bc + w>c xi and let yic = 1,
if xi belongs to class c, and yic = 0 otherwise. The ridge-regression loss function,
1
N

∑
i(fc(xi) − yic)2 + λ ‖ wc ‖2, can be minimized in closed form and leads to

fc(x) = nc

N

(
1+µ>c (Σ+λI)−1x

)
, where Σ is the (class-independent) data covariance

matrix, and nc denotes the number of images in class c. If nc is equal for all classes,
then the score function is equivalent to µ>c (Σ+λI)−1x up to additive and multiplicative
constants. This is similar to our NCM classifier if we set W such that W>W = (Σ +
λI)−1, see Eq. (9). Moreover, just like the NCM classifier, the ridge-regression function
for a new class can also be found from the class mean µc and count nc, once the data
covariance matrix has been estimated.

would yield already N(N − N
C

) pairs. For ILSVRC’10, we have N ≈ 106 and C = 103

which leads to roughly 1012 pairs, and to even more triplets.
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8 T. Mensink, J. Verbeek, F. Perronnin and G. Csurka

4 Experimental Evaluation

In this section we first describe the dataset and evaluation measures used in our exper-
iments. Then, we present our results for metric learning using k-NN classification in
Section 4.2, and those using NCM classification in Section 4.3. Finally, in Section 4.4,
we present results for transfer learning, where we apply metrics trained on some classes
to novel ones, and assess performance as a function of the number of training images.

4.1 Experimental Setup and Baseline Approach

Dataset. In most of our experiments we use the dataset of the ImageNet Large Scale
Visual Recognition 2010 challenge (ILSVRC’10). This dataset contains 1.2M training
images of 1,000 object classes (with between 660 to 3047 images per class), an evalua-
tion set of 50K images, and a test set of 150K images.

Features. We represent each image, with a Fisher vector (FV) [19] computed over
densely extracted SIFT descriptors and local color features, both projected with PCA
to 64 dimensions. FVs are extracted and normalized separately for both channels and
then combined by concatenating the two feature vectors. We do not make use of spatial
pyramids. In our experiments we use FVs extracted using a vocabulary of either 16 or
256 Gaussians. For 16 Gaussians, this leads to a 4K dimensional feature vector, which
requires about 20GB for the 1.2M training set (using 4-byte floating point arithmetic).
This fits into the RAM of our 32GB servers.

For 256 Gaussians, the FVs are 16 times larger, i.e . 64K dimensional, which would
require 320GB of memory. Hence, we compress the feature vectors using product quan-
tization [18]. In a nutshell, it consists in splitting the high-dimensional vector into small
sub-vectors, and vector quantizing each sub-vector independently. We compress the
dataset to approximately 10GB using 8-dimensional sub-vectors and 256 centroids per
sub-quantizer, which allows storing each sub-quantizer index in a single byte. In each
iteration of SGD learning, we decompress the features of a limited number of images,
and use these (lossy) reconstructions for the gradient computation.

Evaluation measures. We report the average top-1 and top-5 flat error used in the
ILSVRC’10 challenge. The flat error is one if the ground-truth label does not corre-
spond to the top-1 label with highest score (or any of the top-5 labels), and zero other-
wise. Unless specified otherwise, we report the top-5 flat error on the test set using the
4K dimensional features; we use the validation set for parameter tuning only. In tables,
we highlight the best result per row in bold, and do so for each feature set if several are
used. Additionally, the baseline performance is also highlighted if it is best.

Baseline approach. For our baseline, we follow the state-of-the-art approach of [8] and
learn 1,000 one-vs-rest SVMs with SGD. The results of the baseline can be found in
Table 2. We see that the 64K dimensional features lead to significantly better results
than the 4K ones, despite the lossy PQ compression. The performance using the 64K
features is slightly better than the ILSVRC’10 challenge winners [10] (28.0 vs. 28.2 flat
top-5 error), and very close to the results of [8] (25.7 flat top-5 error). Note that there a
much higher dimensional representation was used of more than 1M features.
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Metric Learning for Large Scale Image Classification 9

Table 1. k-NN classification performance with 4K dimensional features. For all methods, except
those indicated by ‘Full’, the data is projected to a 128 dimensional space.

k-NN classifiers
SVM `2 `2 LMNN All Dynamic
Full Full + PCA 10 20 10 20

Flat top-1 error 60.2 75.0 76.3 72.9 72.8 67.9 65.1 66.0
Flat top-5 error 38.2 55.9 57.3 50.6 50.4 44.2 39.8 40.7

SGD training and early stopping. To learn the projection matrix W , we use SGD train-
ing, sampling at each iteration a fixed number of training images to estimate the gra-
dient. Following [27], we use a fixed learning rate and use the projection dimension
d ≤ D as well as the number of iterations as an implicit form of regularization. We run
SGD for 750K-4M iterations, and the performance is validated every 10K (NCM) or
50K (k-NN) iterations. The metric which yields the lowest top-5 error is selected. Sim-
ilarly, all hyper-parameters, like the value of k for the k-NN classifiers, are validated in
this way. Unless stated otherwise, training is performed using the ILSVRC’10 training
set, and validation on the provided 50K validation set.

4.2 k-NN Metric Learning Results

We start with an assessment of k-NN classifiers using metrics learned with the methods
described in Section 3.1. Given the cost of k-NN classifiers, we focus our experiments
on the 4K features. We consider the impact of the different choices for the set of target
images Pq as described in Section 3.1, and the influence of the projection dimensional-
ity. We initialize W as a PCA projection, the optimal k is typically 100 or 250.

Target selection for k-NN metric learning. In the first experiment we compare the three
different options of Section 3.1 to define the set of target images Pq , while learning
projections to 128 dimensions. For LMNN and dynamic targets, we experimented with
various numbers of targets on the validation set and found that using 10 to 20 targets
yields the best results.

The results in Table 1 show that all methods lead to metrics that are better than the `2
metric in the original space, or after a PCA projection to 128 dimensions. Furthermore,
we can improve over LMNN by using all within-class images as targets, or even further
by using dynamic targets. The success of the dynamic target selection can be explained
by the fact that among the three alternatives, it is the most closely related to the k-
NN classifier objective. The best performance on the flat top-5 error of 39.8 using 10
dynamic targets is, however, slightly worse than the 38.2 error rate of the SVM baseline.

Impact of projection dimension on k-NN classification. Next, we evaluate the influence
of the projection dimensionality, by varying it between 32 and 1024. We only show
results using 10 dynamic targets, since this performed best among the evaluated k-NN
methods. From the results in Table 2 we see that a projection to 256 dimensions yields
the lowest error of 39.0, still somewhat inferior of those of the SVM baseline.
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10 T. Mensink, J. Verbeek, F. Perronnin and G. Csurka

Table 2. Performance of k-NN and NCM classifiers, as well as baselines, using the 4K and 64K
dimensional features, for various projection dimensions, see text for details.

4K dimensional features 64K dimensional features

Projection dim. 32 64 128 256 512 1024 Full 128 256 512 Full

SVM baseline 38.2 28.0
k-NN, dynamic 10 47.2 42.2 39.8 39.0 39.1 40.4

NCM, learned metric 49.1 42.7 39.0 37.4 37.0 37.0 31.7 31.0 30.7
NCM, PCA+`2 78.7 74.6 71.7 69.9 68.8 68.2 68.0 63.2
NCM, PCA+inv.cov. 75.5 67.7 60.6 54.5 49.3 46.1 43.8
PCA+Ridge-regress. 86.3 80.3 73.9 68.1 62.8 58.9 54.6
WSABIE [7] 51.9 45.1 41.2 39.4 38.7 38.5 32.2 30.1 29.2

4.3 Nearest Class Mean Classification Results

We now consider the performance of NCM classifiers and the related methods described
in Section 3.2. In Table 2 we show the results for various projection dimensionalities.

We first consider the results for the 4K dimensional features. Our first, unexpected,
observation is that our NCM classifier (37.0) outperforms the more flexible k-NN clas-
sifier (39.0), and even slightly outperforms the SVM baseline (38.2) when projecting
to 256 dimensions or more. Interestingly, using the `2 instead of a learned metric, the
situation is reversed and the k-NN classifier is better (55.9, see Table 1) than the NCM
classifier (68.0). WSABIE scores slightly worse (38.5) than the baseline and our NCM
classifier, and does not generalize to new classes without retraining. Like the NCM
classifier, ridge-regression does allow generalization to new classes, but leads to signif-
icantly worse results (54.6) and pre-processing the data with PCA further degrades its
performance.

We also consider two variants of the NCM classifier where we use PCA to reduce
the dimensionality. In one case we use the `2 metric after PCA. In the other, inspired by
ridge-regression, we use the metric generated by the inverse of the regularized covari-
ance matrix, see Section 3.2. We tuned the regularization parameter λ on the validation
set, as was also done for ridge-regression. From these results we can conclude that, just
like for k-NN, the `2 metric with or without PCA leads to poor results as compared to
a learned metric. Second, the feature whitening implemented by the inverse covariance
metric, leads to results that are better than using the `2 metric, and also substantially
better than ridge-regression. The results are however significantly worse than using our
learned metric, in particular when using low-dimensional projections.

When we use the 64K dimensional features, the results of the NCM classifier (30.7)
are somewhat worse than the SVM baseline (28.0); again the learned metric is better
than using `2 (63.2). WSABIE obtains an error of 29.2, in between the SVM and NCM.

In Figure 1 we illustrate the difference between the `2 and the Mahalanobis metric
induced by a learned projection from 64K to 512 dimensions. For three reference classes
we show the five nearest classes, based on the distance between class means. We also
show the probabilities on the reference class and its five neighbor classes according to
Eq. (6). The feature vector x is set as the mean of the reference class, i.e . a simulated
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Metric Learning for Large Scale Image Classification 11

Table 3. Performance of 1,000-way classification among test images of 200 classes not used for
metric learning, and control setting with metric learning using all classes. Left column denotes
the number of training classes used, and “plain” denotes k-NN or NCM using the `2 distance.

4K dimensional features 64K dimensional features
SVM k-NN NCM SVM NCM
Full 128 256 Full 128 256 512 1024 Full Full 128 256 512 Full

Plain 54.2 66.6 61.9
1000 37.6 39.1 38.4 38.6 36.8 36.4 36.5 27.7 31.7 30.8 30.6
800 42.2 42.4 42.5 40.4 39.9 39.6 39.3 37.7 37.1

perfectly typical image of this class. For the `2 metric, we used our metric learning
algorithm to learn a scaling of the `2 metric to minimize Eq. (7). This does not change
the ordering of classes, but ensures that we can compare probabilities computed using
both metrics. We find that, as expected, the learned metric has more semantically related
class neighbors. Moreover, we see that using the learned metric most of the probability
mass is assigned to the reference class, whereas the `2 metric leads to rather uncertain
classifications.

4.4 Generalization to New Classes and Using Few Samples

Given the encouraging classification accuracy of the NCM classifier observed above
—and its superior efficiency as compared to the k-NN classifier— we now explore its
ability to generalize to novel classes. We also consider its performance as a function of
the number of training images available to estimate the mean of novel classes.

Generalization to novel classes not seen during training. In this experiment we use
approximately 1M images corresponding to 800 random classes to learn metrics, and
evaluate the error of a 1,000-way classification across all classes. We report the error
computed over the 30K images in the test set of the held-out 200 classes. Performance
among test images of the 800 train classes changes only marginally and would obscure
the changes among the test images of the 200 held-out classes.

In Table 3 we show the performance of NCM and k-NN classifiers for several pro-
jection dimensions, and compare it to two control settings, training on all 1,000 classes,
and using the `2 distance. The results show that both classifiers generalize remarkably
well to new classes. In particular for 1024 dimensional projections of the 4K features,
the NCM classifier achieves an error of 39.6 over classes not seen during training, as
compared to 36.5 when using all classes for training. For the 64K dimensional fea-
tures the drop in performance is larger, but it is still surprisingly good considering that
training for the novel classes consists only in computing the mean.

To further demonstrate the generalization ability of the NCM classifier using learned
metrics, we also compare it against the SVM baseline on the ImageNet-10K dataset.
This dataset, introduced in [3], consists of 4.5M training images of 10,184 classes,
and a test set of another 4.5M images. We use projections learned on the ILSVRC’10
dataset, and only compute the means of the 10K classes. The results in Table 4 show that
even in this extremely challenging setting the NCM classifier performs remarkably well
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12 T. Mensink, J. Verbeek, F. Perronnin and G. Csurka

Table 4. Average per-class performance of the NCM classifier on the ImageNet-10K dataset,
using metrics learned on the ILSVRC’10 dataset, and comparison to previously published results.

4K dimensional features 64K dimensional features 21K 128K 128K

Proj. dim. 128 256 512 1024 SVM 128 256 512 SVM [3] [8] [11]

Flat top-1 91.8 90.7 90.5 90.4 86.0 87.1 86.3 86.1 78.1 93.6 83.3 81.9

Flat top-5 80.7 78.9 78.6 78.6 72.4 71.7 70.5 70.1 60.9

compared to [3,8,11] and our baseline, all of which require training 10K classifiers. We
note that, to the best of our knowledge, our baseline results exceed the previous known
state-of-the-art [3,8,11] on this dataset. Training our SVM baseline system took 9 and
280 CPU days respectively for the 4K and 64K features, while the computation of the
means for the NCM classifier took approximately 3 and 48 CPU minutes respectively.
This represents roughly a 8,500 fold speed-up as compared to the baseline, without
counting the time to learn the projection matrix.

Accuracy as a function of the number of training images of novel classes. In our last
experiment we consider the error as a function of the number of images that are used
to compute the means of novel classes. We also include results of a zero-shot learning
experiment, where we use the ImageNet hierarchy to estimate the mean of novel classes
from the means of related training classes. We follow ideas of [5] and estimate the mean
of a novel class as the average of the means associated with all ancestor nodes in the
ILSVRC’10 class hierarchy. The means of internal nodes are computed as the average
of the means of all descendant training classes. If we view the estimation of a class mean
as the estimation of the mean of a Gaussian distribution, then the sample average µs

corresponds to the Maximum Likelihood (ML) estimate and the zero-shot estimate µz

can be thought of as a prior. We can combine this prior with the ML estimate to obtain a
maximum a-posteriori (MAP) estimate µp on the class mean. The MAP estimate of the
mean of a Gaussian is obtained as the ML estimate weighted by the number n of images
that were used to compute it, plus the prior mean which has a weight m determined on
the validation set [28], i.e . µp = (nµs +mµz)/(n+m).

In Figure 2 we analyze the performance of the NCM classifier trained on the images
of the same 800 classes used above, with a learned projection from 64K to 512 dimen-
sions. We again report the error among test images of the held-out classes, both in a
1,000-way classification as above, and in a 200-way classification as in [5]. We repeat
the experiment 10 times, and show error-bars at three times standard deviation. For the
error to stabilize we only need approximately 100 images to estimate the class means.
The results also show that the prior leads to zero-shot performance of 64.3, which is
comparable to the result of 65.2 reported in [5], even though they used a different set of
200 test classes. More importantly, we show that the zero-shot prior can be effectively
combined with the empirical mean to provide a smooth transition from the zero-shot
setting to a setting with many training examples. Inclusion of the zero-shot prior leads
to a significant error reduction in the regime where ten images or less are available.
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Fig. 2. Performance of NCM as a function of the number of images used to compute the means
for classes not used during training, with and without the zero-shot prior. See text for details.

5 Conclusions

We have evaluated metric learning techniques to support k-NN and NCM classifiers,
which can be applied on large scale dynamic and open-ended image datasets, and allow
extensions at (near) zero cost to new classes not used for training. Surprisingly we
found that the NCM classifier outperforms the more flexible k-NN approach. Moreover,
using a learned metric, the performance of the NCM classifier is comparable to that of
SVM classifiers, while projecting the data to only 256 dimensions. Our learned metrics
generalize well to unseen classes, as shown in experiments where the metric is learned
on a subset of the classes, and further corroborated by our experiments on the ImageNet-
10K dataset. In addition, we have shown that our NCM classifiers can be used in a
zero-shot setting where no training images are available for novel classes, and that the
zero-shot model significantly boosts performance when combined with a class mean
estimated from a limited amount of training images.

In the proposed NCM classifiers each class is represented only by its mean, while
this has the advantage of obtaining fast linear classifiers at test time, this representation
is also rather restrictive. In ongoing work we extend this class representation, for exam-
ple by using a representation based on a set of class centroids, to obtain more flexible
and non-linear classifiers.

Interestingly, query-by-example image retrieval can be seen as a classification prob-
lem where a single positive sample is provided. In such a case, the class mean simplifies
to the query which shows that the proposed NCM provides a unified way to treat clas-
sification and retrieval problems. This is a direction that we will explore in future work.
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