| attice Basis Reduction

Bounds and Algorithms

Matthew Cary
October 15, 2003



gcd(a,b) =minT{|z-a+y-b|: z,y € Z}

x GCD is the minimum nonzero element of a discrete set

* Euclidean algorithm computes this by iteratively subtracting a
and b from each other



A Generalized GCD

AB) =minT{||B-z| : z € Z"}

* Theset {B-z:x € Z"} is called a /attice
x Computing X\(B) is NP-hard

*x Approximation is active field of research

o NP-hard to approximate to a constant [Micciancio '98, Ajtai '98].

¢ Polynomial-time algorithms to find a reduced basis that approximates
the shortest vector to (1 4+ ¢)" [LLL '82, Schnorr '87]
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Lattice Applications

*x Direct application
¢ Knapsack cryptosystems

¢ Integer programming with a fixed number of variables

*x Linear approximation of nonlinear systems
¢ Small roots of modular polynomials

¢ Truncated linear congruential generators

* Number theory
¢ Factoring integer polynomials

¢ Small integer relations
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Applications of Lattice Basis Reduction f>

T

[Shamir '82] used fixed-dimension IP algorithm [Lenstra '83]
based on LLL to break Merkle-Hellman Knapsack cryptosystem

['78].

The Chor-Rivest Subset Sum cryptosystem ['84] was broken in
dimension 103 [Schnorr, Horner '95], using low-density subset

sum lattices (suggested dimension is ~ 200).
Low-density subset sum can be solved up to density 0.9408...

Other classic applications: Factoring polynomials over Z,
finding small integer relations, attacking low-degree RSA,
breaking truncated linear congruential pseudo-random number

generators, bounding bits leaked by RSA.
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A Lattice: Geometrically



A Symmetric Convex Body in a Lattice />

How big can C be

before containing a lattice point (other than the origin)?
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A Tricky Symmetric Convex Body in a Lattice
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Minkowski’'s Convex Body Theorem

Any convex body symmetric about the origin in R™ with
volume greater than 2", contains a nonzero point of Z"
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Blichfeldt's Lemma />

Let M be any bounded open set with volume > 1. Then
M contains two points x and y with x —y € Z"
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Proof of Blichfeldt’'s Lemma

* Divide M based on unit squares
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Proof of Blichfeldt’'s Lemma

* AS volume > 1, two regions must overlap
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Proof of Blichfeldt’'s Lemma

x The overlap points differ by a vector in Z" [ ]
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Minkowski’'s Convex Body Theorem

Any convex body symmetric about the origin in R™ with
volume greater than 2", contains a nonzero point of Z"

* Shrink C' by factor of 2 in every direction

* Resulting volume > 1, so Blichfeldt’s lemma applies

AR
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Minkowski’'s Convex Body Theorem

* T —y EeL”

* 2x,2y,—2y € C' as factor of 2 larger and symmetric

AR



| Minkowski's Convex Body Theorem

* 2x,—2y € C' as factor of 2 larger and symmetric

* The midpoint z of 2 and —2y also in C as convex

* z=%(2x—2y)=x—'y€Z” []
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General Lattices

ik ° L
[ ) [ ) ° ° * o
B .

det T tells how volume scales between Z"™ and L
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General Lattices

Any (convex, symmetric) body in L is related to a
(convex, symmetric) body in Z"
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Using Minkowski's First Theorem

7n L
B! *

x Let A(L) be the length of a shortest nonzero vector in
L

* T he sphere in £ just containing a shortest vector has
volume A(L)" -V,

* Minkowski's Theorem says

AL)"-V, / detB <2n

volume of sphere 1 b change in volume for ellipse

AR



Using Minkowski's First Theorem />

* Minkowski's Theorem says

ANL)"-V, / detB <2n

volume of sphere S . change in volume for ellipse |

* Rearranging,

ML) < 2(det(B)/ V)™ < v/ndet(B)L/"
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Lattice Basis

[ ] [ } [ } b2 [ } [ } ]
[ ] [ } bl [ } [ } ]
B = [b1b7]
Z2 l—>B £

L= {iUlbl ~+ xobo I x1, 20 € Z}

T
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Why B is a Basis

The triangle spanned by B contains no lattice
points except the vertices
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There are many bases for the same lattice
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Why the Bases are the Same

T

* T he red basis can be expressed in the green basis, and vice-versa

*x Integer unimodular transformation U with

A=UB



We Like Some Bases Better Than Others

T

Transform given basis to one with short vectors:

Basis Reduction
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Geometry of Determinant

T

x d(L£) & det B = volume of fundamental region

%= If B is not square, d(£) = Vdet BBT



Results on Shortest Vectors

T

*

*

*

Recall that A(L) is the length of a shortest non-zero vector of L.

Theory tells us:
L) < Vn-d(L)tm
[Minkowski 1896]

Polynomial-time LLL algorithm finds v € £ with:

| < 2m*.g(L)t/n
| < 2" X(L)

[Lenstra, Lenstra, Lovasz '82]

Block Korkine-Zolotareff reduction replaces 2 with (1 4 ¢)
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2D Reduction

The Two-Dimensional Case

(] (] (] (] (]
b
(] (] (] (] (] (]
b/

(] (] (] (] 2 (]

(] (] (] L‘
Reduction b/1
(] (] (] (] (] (]
b1

(] (] (] (] (]

b is a shortest vector
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2D Reduction

b

b1

If |b1| < |b2|, shrink by by adding multiples of b3
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Gram-Schmidt Orthogonalization

T

bo = b5 + uby

b5 L by

b5, u rational quantities

.



How Much to Add?

be pl = -1 -

by = b + (1 — 1) )b1 = b5 + p'by

1
'] < 5

T
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2D Reduction

b, by by
g b > L
I / b/2
—_ [
[
2
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Gaussian Reduction Conditions

T

=
1
01N

b

.. .until no more improvement possible:

swap only

b1] < |bo]
ul <3



2D Reduction

Carl Friedrich Gauss (1777-1855)
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| The Gaussian Reduction Algorithm f)

GaussianReduce(bq, bo)
do GCZ(w,y)
if |b1| > |bo| then © o then
swap b1, bo Y
<l|72,1|?21> Swap z,y
b1 (z,y) «(y mod z,z)
ba — by = [p] by while z > 0
while |by| > |bo| return o
return (bq,bo)

4

T



| Generalizing Gaussian Reduction />

Gram-Schmidt Orthogonalization in Arbitrary

Dimension

b] = b1
b3 is component of b perpendicular to b;.

b} is component of b3 perpendicular to span(bi, b2).

AR
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Gram-Schmidt Orthogonalization

T

fij - b7 S




Projecting Lattices

{b17 b27 b3} — {b/27bé3}
Project bo and b3 to subspace 1 b;
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When to Swap

Apply Gaussian Reduction to b7, b5:

Swap if [b5]% > £|b5|2

AR
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The Algorithm

T

General — Reduction(B = by,...,bn)
while [b7[% > Z|b%, 1 + piq1,:b7|2 for some 4,
{some pair not Gaussian reduced}
GaussianReduce(b], (b;‘_l_1 + pi41.407))
update upg, and by for all h, k.
B « SizeReduce(B)
return B

This is the famous LL L Basis Reduction of Lenstra, Lenstra and Lovasz
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The Gaussian Reduction Algorithm

GaussianReduce(bq, bo)
do
if |b1| > |bQ| then

swap b1, bo
<b27b1>
[b1]2
by «— by — [u] b1 { size-reduction }
while [b1]? > 3|bo|?

return (b1,065)

T
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Size-Reduction with Gram-Schmidt

SizeReduce(B = bqy,...,bp)
for y=2,....n
fori.=459—-1,...,1
bj — bj — [pjilb;

ik — Hjk — [pjilpgg for k=1,...

return B

1 o
* Now |MZ]| < 5 for all 3 <1

x b7 are unchanged

T

£



Summary

T

Algorithms

O(n*log S) operations on O(nlog S)-bit numbers, on
n X n input matrix with S-bit coefficients.

Improved to O(n®log S) operations on O(n + log S)-bit

integers and floating point numbers [Schnorr, Koy '01].

By reducing blocks rather than pairs of vectors, get
(1 4 €)™/2 approximation [Schnorr '89] (~ 1.5 is
practical).

The current standard is block-reduction, sped up with
pruning heuristic and floating-point Gram-Schmidt
calculations, iterating several stages over the basis to
be reduced. Lattices of dimension 800 and similar
bit-length are practical.



An Asymptotically Bad Basis for LLL

T

- o —
Hoo %
B = p pe ap
pn_l . . “ . apn_l
by = ap'?

i = épj_i for 7>

bi| = pH(a+i—1)

|bi+1(i)|2 _ a2p21+%a2p21¢—2
Dok aZp22

(det B)1/" = qp(n—1)/2

1

If we take a = v/3 and p = «/2, then |b;11(i)|?/]|6:(i)|? =1 and pj;; = 1/2
for 7 >4, hence B is LLL reduced. But the last row has length

np" ta? = /np" V20 ... while |b1] = .

Permute this order, and it's no longer reduced. No bad basis known if

rows are permuted before performing the reduction.



Towards Schnorr’'s Algorithm

T

* LLL reduction finds shortest vectors in projected 2D blocks, and iterates

b1 bx b3 bs bs be by bs bg bio
N——

* Could we improve by finding optimum of larger blocks?

b1 b2 b3 bs bs bs b7 bs bg big

~~

*x Issues:
o Is there an “efficient” exhaustive search to find the shortest vector?
¢ What's the right reduction to use so we can iterate?

¢ Can we prove it works?



Korkine-Zolotareff Reduction

* For basis B, let B’ = {b,,...,¥,}

x B is Korkine-Zolotareff reduced if

b1| = A(B), and
B’ is Korkine-Zolotareff reduced

AR



Why so complicated?

T

* A natural notion of reduction might be:

b1 = A (B),
|b2| = )\ (B \ {bl}) , etc.

* But such a set may not be a basis if n > 5!

2
2
2
2
1 1 1 1 1

* KZ reduction recurses on projected bases rather than linearly
independent bases

o Easier to work with



Block KZ Reduction: The Algorithm f)

*x Divide basis into overlapping blocks of length &

BIoEk 1
bi bo b3z by bgs bg by bg
Block 2

* While there exists a block that isn't KZ reduced, reduce it

*x AS blocks overlap, reduction of one block may provide op-
portunity to reduce an overlapping block

x Can prove polynomial running time (sort of...)



Block KZ Reduction: The Analysis

T

*

*

*

*

*

: 2 /112
= Mmax
befine an KZ reguced |b1| /|bn|

Universal constant for KZ reduction

A k-block KZ reduced basis satisfies

12 < a)FA(L)?

Minkowski’'s Theorem implies oy < k1TINk

By setting k appropriately, k(1 +Nk)/k (1 4 ¢) gives the
bound we want



Digression on ap,

T

*

*

([ ([
o b]_ o
] {
by = b
([ ([
] ® ®
([ ([ ([

1b1]2/|b%|? gives good metric for quality of reduction of basis
An LLL-reduced basis has |b1]?/|b}]|? ~ 27
A KZ-reduced basis has [b1]?/[b}]|? = ap ~ n'""

Quality of basis reduction much deeper than shortest vector:
exponential versus quasi-polynomial



Future Directions

* Select random subspaces of the lattice and reduce there

o Classical results (Dvortsky's Theorem) suggest lattice will
behave nicely on random subspaces

* Problem: the subspace is likely to have a very short vector

* Solution: reduce across many subspaces

o Experimental results promising

T



Random Subspace Reduction

T

b/

Select lattice subspaces H; --- H;y depending on
basis

Project b1 to each subspace, rationally

Subtract rounded sum of projected points
from b; to get v
Intuition:

¢ If basis not well-reduced, the H; will share
common alignment

o After subtraction, b will be more
orthogonal to this alignment

Seems to work in practice



