
Cut Problems Reference
A graph G = (V, E) is assumed undirected. n = |V | and m = |E|. Edges may be weighted with capacities c(e) for
e ∈ E. We assume vertices are numbered and so speak of i ∈ V for i ∈ {1, . . . n}.
Given a set of vertices S ⊂ V , δ(S) = {(i, j) ∈ E : i ∈ S, j /∈ S}, that is, the edges that cross from S into V \ S.

A path is a seqence of edges connected two vertices. P will denote all paths in a graph, and Pij all paths between

vertices i and j. A flow on a graph is an assignment to the paths of G that respects the capacities, that is, if f(p) is

the flow assigned to path p,
∑

p3e f(p) ≤ c(e) for all e ∈ E. The total flow of a graph is
∑
P f(p).

Minimum Cut Linear Arrangement: Given a permutation σ on {1 . . . n}, define
Si = {(k, j) ∈ E : σ(k) ≤ i < σ(j)}. The la problem is to find a σ minimizing maxi

∑
e∈Si

c(e). A
ρ-approximation for Graph Bisection or Balanced Cut (see below) gives a
O(ρ log n)-approzimation to la.

Graph Bisection: Find a partition of V into V1 and V2 with |V1| = bn/2c to minimize
∑

e∈δ(V1)
c(e).

Balanced Cut: Find a partition of V into V1 and V2 with that |Vi| < 2n/3 for i = 1, 2 that minimizes∑
e∈δ(V1)

c(e). Leighton and Rao found a O(log n) approximation algorithm.

Sparsest Cut: Find a subset of vertices S ⊂ V minimizing the sparsity ratio

ρ(S) =

∑
e∈δ(S) c(e)

|S| · |S|
.

There is an alternative definition when k pairs of vertices (si, ti) are distinguished as terminals, with
each pair assigned a demand d(i). In this case, let I(S) = {i : |S ∩ {si, ti}| = 1} be the set of terminal
pairs that are split by the cut. Then

ρ(S) =

∑
e∈δ(S) c(e)∑
i∈I(S) d(i)

.

The above cut problems are all NP-hard, and most (?) do not have approximations better than log n or√
log n. Almost nothing is known about hardness of approximation and this is a huge open question.

Minimum Multicut: Given k pairs of terminal vertices (si, ti), a multicut is a subset of edges F ⊂ E
that disconnect the terminals, that is in G = (V,E \ F), no terminal pair is in the same connected
component. The Minimum Multicut problem is to find a multicut F that minimizes

∑
e∈F c(e).

Maximum Multicommodity Flow: Given a graph G, k pairs of terminal vertices (si, ti), maximize the
total flow between terminal vertices. This may be solved by linear programming. The dual LP is a
fractional Minimum Multicut instance.

Maximum Concurrent Flow: Each terminal pair is associated with a demand d(i), i = 1, . . . , k. The
mcf problem is to find the maximum λ so that there exists a flow f with

∑
p∈Pi

f(p) = λd(i) where
Pi denotes all paths between terminal pair i. This may be solved by linear programming.

Linear Programming
A linear program (LP) is a problem of the following form. Given a matrix A, a constraint vector b, and an
objective vector c, find a vector x that

minimizes 〈c, x〉 (1)
subject to

Ax ≥ b, and (2)
x ≥ 0. (3)

Here the inequalities are interpreted componentwise. A feasible solution is an x that satisfies (2–3) but
may not be a maximizer. An integer program (IP) replaces (3) with the condition x ∈ {0, 1} or x ∈ Z. The
direction of the inequality Ax ≤ b and minimizing versus maximizing the objective function are sometimes
switched. The dual of the above primal linear program is to find a vector y that

maximizes 〈b, y〉 (4)
subject to

Aty ≤ c, and (5)
y ≥ 0. (6)

The famous min-max theorem states that if x and y are feasible solutions to the primal and dual LPs,
respectively, then

1. 〈c, x〉 ≥ 〈b, y〉 (weak duality), and

2. Equality is achieved if and only if x and y are optimal (strong duality).

The LP relaxation for minimum multicut and the dual maximum multicommodity flow problem are
given below. G = (V,E) is an undirected graph with constraints c(e) on each edge e. k pairs {(si, ti)}k

i=1

are given as terminals. Pi denotes the set of paths between si and ti and Pi(e) = {P ∈ Pi : e ∈ P}.

minimum multicut (Primal)

minimize
∑

e∈E c(e)x(e)

subject to ∑
e∈P x(e) ≥ 1, for each P ∈ Pi, i = 1, . . . , k

x(e) ≥ 0 for each e ∈ E

maximum multicommodity flow (Dual)

maximize
∑k

i=1

∑
P∈Pi

f(P)

subject to ∑k
i=1

∑
e∈Pi(e)

f(P) ≤ c(e), for each e ∈ E

f(e) ≥ 0 for each P ∈ Pi, i = 1, . . . , k

