Cut Problems Reference

A graph $G=(V, E)$ is assumed undirected. $n=|V|$ and $m=|E|$. Edges may be weighted with capacities $c(e)$ for $e \in E$. We assume vertices are numbered and so speak of $i \in V$ for $i \in\{1, \ldots n\}$.
Given a set of vertices $S \subset V, \delta(S)=\{(i, j) \in E: i \in S, j \notin S\}$, that is, the edges that cross from S into $V \backslash S$.
A path is a seqence of edges connected two vertices. \mathcal{P} will denote all paths in a graph, and $\mathcal{P}_{i j}$ all paths between vertices i and j. A flow on a graph is an assignment to the paths of G that respects the capacities, that is, if $f(p)$ is the flow assigned to path $p, \sum_{p \ni e} f(p) \leq c(e)$ for all $e \in E$. The total flow of a graph is $\sum_{\mathcal{P}} f(p)$.

Minimum Cut Linear Arrangement: Given a permutation σ on $\{1 \ldots n\}$, define $S_{i}=\{(k, j) \in E: \sigma(k) \leq i<\sigma(j)\}$. The LA problem is to find a σ minimizing $\max _{i} \sum_{e \in S_{i}} c(e)$. A ρ-approximation for Graph Bisection or Balanced Cut (see below) gives a $O(\rho \log n)$-approzimation to LA.

Graph Bisection: Find a partition of V into V_{1} and V_{2} with $\left|V_{1}\right|=\lfloor n / 2\rfloor$ to minimize $\sum_{e \in \delta\left(V_{1}\right)} c(e)$.
Balanced Cut: Find a partition of V into V_{1} and V_{2} with that $\left|V_{i}\right|<2 n / 3$ for $i=1,2$ that minimizes $\sum_{e \in \delta\left(V_{1}\right)} c(e)$. Leighton and Rao found a $O(\log n)$ approximation algorithm.

Sparsest Cut: Find a subset of vertices $S \subset V$ minimizing the sparsity ratio

$$
\rho(S)=\frac{\sum_{e \in \delta(S)} c(e)}{|S| \cdot|\bar{S}|}
$$

There is an alternative definition when k pairs of vertices $\left(s_{i}, t_{i}\right)$ are distinguished as terminals, with each pair assigned a demand $d(i)$. In this case, let $I(S)=\left\{i:\left|S \cap\left\{s_{i}, t_{i}\right\}\right|=1\right\}$ be the set of terminal pairs that are split by the cut. Then

$$
\rho(S)=\frac{\sum_{e \in \delta(S)} c(e)}{\sum_{i \in I(S)} d(i)}
$$

The above cut problems are all NP-hard, and most (?) do not have approximations better than $\log n$ or $\sqrt{\log n}$. Almost nothing is known about hardness of approximation and this is a huge open question.

Minimum Multicut: Given k pairs of terminal vertices $\left(s_{i}, t_{i}\right)$, a multicut is a subset of edges $F \subset E$ that disconnect the terminals, that is in $\bar{G}=(V, E \backslash F)$, no terminal pair is in the same connected component. The Minimum Multicut problem is to find a multicut F that minimizes $\sum_{e \in F} c(e)$.

Maximum Multicommodity Flow: Given a graph G, k pairs of terminal vertices $\left(s_{i}, t_{i}\right)$, maximize the total flow between terminal vertices. This may be solved by linear programming. The dual LP is a fractional Minimum Multicut instance.

Maximum Concurrent Flow: Each terminal pair is associated with a demand $d(i), i=1, \ldots, k$. The MCF problem is to find the maximum λ so that there exists a flow f with $\sum_{p \in \mathcal{P}_{i}} f(p)=\lambda d(i)$ where \mathcal{P}_{i} denotes all paths between terminal pair i. This may be solved by linear programming.

Linear Programming

A linear program (LP) is a problem of the following form. Given a matrix A, a constraint vector b, and an objective vector c, find a vector x that

$$
\begin{align*}
& \text { minimizes } \quad\langle c, x\rangle \tag{1}\\
& \text { subject to } \\
& \tag{2}\\
& \tag{3}\\
& \\
& \\
&
\end{align*}
$$

Here the inequalities are interpreted componentwise. A feasible solution is an x that satisfies (2-3) but may not be a maximizer. An integer program (IP) replaces (3) with the condition $x \in\{0,1\}$ or $x \in \mathbb{Z}$. The direction of the inequality $A x \leq b$ and minimizing versus maximizing the objective function are sometimes switched. The dual of the above primal linear program is to find a vector y that

$$
\begin{align*}
& \text { maximizes } \quad\langle b, y\rangle \tag{4}\\
& \text { subject to } \\
& \tag{5}\\
& \quad A^{t} y \leq c, \text { and } \tag{6}\\
& y
\end{align*}
$$

The famous min-max theorem states that if x and y are feasible solutions to the primal and dual LPs, respectively, then

1. $\langle c, x\rangle \geq\langle b, y\rangle$ (weak duality), and
2. Equality is achieved if and only if x and y are optimal (strong duality).

The LP relaxation for minimum multicut and the dual maximum multicommodity flow problem are given below. $G=(V, E)$ is an undirected graph with constraints $c(e)$ on each edge e. k pairs $\left\{\left(s_{i}, t_{i}\right)\right\}_{i=1}^{k}$ are given as terminals. \mathcal{P}_{i} denotes the set of paths between s_{i} and t_{i} and $\mathcal{P}_{i}(e)=\left\{P \in \mathcal{P}_{i}: e \in P\right\}$.
minimum multicut (Primal)
minimize $\quad \sum_{e \in E} c(e) x(e)$
subject to
$\sum_{e \in \mathcal{P}} x(e) \geq 1, \quad$ for each $P \in \mathcal{P}_{i}, i=1, \ldots, k$
$x(e) \geq 0 \quad$ for each $e \in E$

MAXIMUM MULTICOMMODITY FLOW (Dual)
maximize $\quad \sum_{i=1}^{k} \sum_{P \in \mathcal{P}_{i}} f(P)$
subject to

$$
\begin{array}{ll}
\sum_{i=1}^{k} \sum_{e \in \mathcal{P}_{i}(e)} f(P) \leq c(e), & \text { for each } e \in E \\
f(e) \geq 0 & \text { for each } P \in \mathcal{P}_{i}, i=1, \ldots, k
\end{array}
$$

