Cut Problems Reference

A graph G = (V, E) is assumed undirected. n = |V| and m = |E|. Edges may be weighted with capacities c(e) for
e € E. We assume vertices are numbered and so speak of i € V for i € {1,...n}.

Given a set of vertices S C V, §(S) ={(i,j) € E:i € S,j ¢ S}, that is, the edges that cross from S into V' \ S.

A path is a seqence of edges connected two vertices. P will denote all paths in a graph, and P;; all paths between
vertices ¢ and j. A flow on a graph is an assignment to the paths of G that respects the capacities, that is, if f(p) is

the flow assigned to path p, >° . f(p) < c(e) for all e € E. The total flow of a graph is >, f(p).

poe

MINIMUM CUT LINEAR ARRANGEMENT: Given a permutation ¢ on {1...n}, define
Si={(k,j) € E:0(k) <i<o(j)}. The LA problem is to find a o minimizing max;) .4 c(e). A
p-approximation for GRAPH BISECTION or BALANCED CUT (see below) gives a
O(plogn)-approzimation to LA.

GRAPH BISECTION: Find a partition of V' into V4 and V5 with |V4]| = |n/2] to minimize ZeEé(Vl) c(e).

BALANCED CUT: Find a partition of V into V; and Vs with that |V;| < 2n/3 for ¢ = 1,2 that minimizes
> ees(vy) cle). Leighton and Rao found a O(log n) approximation algorithm.

SPARSEST CUT: Find a subset of vertices S C V minimizing the sparsity ratio

o(S) = Zee5(3) c(e)

|S]- 15|
There is an alternative definition when k pairs of vertices (s;,t;) are distinguished as terminals, with
each pair assigned a demand d(¢). In this case, let I(S) = {i: |S N {s;,t;}| = 1} be the set of terminal
pairs that are split by the cut. Then

o(S) = Zeeé(s) c(e)

2ien(s) 4(9)

The above cut problems are all NP-hard, and most (?) do not have approximations better than logn or
v/1ogn. Almost nothing is known about hardness of approximation and this is a huge open question.

MiNtMUM MULTICUT: Given k pairs of terminal vertices (s;,;), a multicut is a subset of edges I' C £
that disconnect the terminals, that is in G = (V, E'\ F), no terminal pair is in the same connected
component. The MINIMUM MULTICUT problem is to find a multicut F' that minimizes) .5 c(e).

MaxiMuM MuLTICOMMODITY FLOW: Given a graph G, k pairs of terminal vertices (s;, t;), maximize the
total flow between terminal vertices. This may be solved by linear programming. The dual LP is a
fractional MINIMUM MULTICUT instance.

MaxiMUM CONCURRENT FLow: Each terminal pair is associated with a demand d(¢), i =1,...,k. The
MCF problem is to find the maximum A so that there exists a flow f with 3° 5 f(p) = Ad(i) where
P; denotes all paths between terminal pair ¢. This may be solved by linear programming.

Linear Programming

A linear program (LP) is a problem of the following form. Given a matrix A, a constraint vector b, and an
objective vector c, find a vector x that

minimizes (e, x) (1)
subject to

Az > b, and (2)

x> 0. (3)

Here the inequalities are interpreted componentwise. A feasible solution is an x that satisfies (2-3) but
may not be a maximizer. An integer program (IP) replaces (3) with the condition = € {0,1} or « € Z. The
direction of the inequality Az < b and minimizing versus maximizing the objective function are sometimes
switched. The dual of the above primal linear program is to find a vector y that

maximizes (b,) (4)
subject to

Aly < ¢, and (5)

y=0. (6)

The famous min-max theorem states that if x and y are feasible solutions to the primal and dual LPs,
respectively, then

1. {e,z) > (b,y) (weak duality), and

2. Equality is achieved if and only if 2 and y are optimal (strong duality).

The LP relaxation for MINIMUM MULTICUT and the dual MAXIMUM MULTICOMMODITY FLOW problem are
given below. G = (V, E) is an undirected graph with constraints c(e) on each edge e. k pairs {(s;,t;)}%_;
are given as terminals. P; denotes the set of paths between s; and t; and P;(e) = {P € P; : e € P}.

MINIMUM MULTICUT (Primal)

minimize) . c(e)z(e)
subject to

cepr(e)>1, foreach PePii=1,...,k
x(e) >0 for each e € E

MAXIMUM MULTICOMMODITY FLOW (Dual)

maximize Zi—;l ZPEPi f(P)

subject to

Y1 Yeepi(e) F(P) < cle), foreacheeE
f(e) >0 foreach Pe P;,i=1,...,k

