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For this problem set recall that the Pauli X, Y , and Z are

X =
[

0 1
1 0

]
, Y =

[
0 −i
i 0

]
, and Z =

[
1 0
0 −1

]
. (1)

Exercise 1: Tsirel’son’s Inequality

Suppose that A, A′, B, B′ are operators on some Hilbert space H which satisfy A2 = A′2 = B2 = B′2 = I
and [A,B] = [A,B′] = [A′, B] = [A′, B′] = 0 (where the commutator is [M,N ] = MN −NM .)
(a) Define C = AB +AB′ +A′B −A′B′. Show that C2 = 4I − [A,A′][B,B′].
(b) The sup norm of an operator M is defined as

||M ||sup = sup
|ψ〉6=0

||M |ψ〉||
|||ψ〉||

(2)

where || · || is the standard norm on our Hilbert space. Prove that

||M +N ||sup ≤ ||M ||sup + ||N ||sup (3)

and

||MN ||sup ≤ ||M ||sup||N ||sup (4)

(c) Use these properties of the sup norm to show that

||C||sup ≤ 2
√

2 (5)

This is Tsirel’son’s (or Cirel’son’s) inequality. Suppose we are working on a Hilbert space of two qubits. If we take
A = A1 ⊗ I, A′ = A2 ⊗ I, B = I ⊗B1, and B′ = I ⊗B2, then this expression is

||A1 ⊗B1 +A1 ⊗B1 +A2 ⊗B1 −A2 ⊗B2||sup ≤ 2
√

2 (6)

Recall that from class we saw that for local hidden variable theories satisfy the CHSH inequality: |〈C〉| ≤ 2. So
Tsirel’son’s inequality bounds the “amount” of violation that quantum states can have over the CHSH inequality. In
fact quantum theory can saturate this bound.

Exercise 2: A Quantum Error Detecting Code

In this problem we will examine a quantum error detecting code on four qubits.
(a) Show that the three four-qubit Pauli group operators S1 = X⊗X⊗I⊗I, S2 = I⊗I⊗X⊗X, S3 = Z⊗Z⊗Z⊗Z

all commute with each other (two operators commute if AB = BA.)
(b) The subspace defined by the simultaneous equations Si|ψ〉 = |ψ〉 is two dimensional. Construct an operator

made up of a sum of products of Si operators which projects onto this subspace. Such an operator should satisfy
P |ψ〉 = |ψ〉 for |ψ〉 in the subspace and P |ψ〉 = 0 for all |ψ〉 orthogonal to states in the subspace.

(c) Use the projector you constructed in the last problem to find a basis for the subspace defined by the simultaneous
equations Si|ψ〉 = |ψ〉.

(d) Find a Pauli group operator (i.e. one that can be written as a product of Pauli matrices, see problem set 1) which
commutes with each of the Si but which is not a product of the Sis (and is not identity).

(e) Prove that P ⊗ I ⊗ I ⊗ I where P is a Pauli matrix anti-commutes (two operators anticommute if AB = −BA)
with at least one of the elements Si. Argue why this is true for I ⊗ P ⊗ I ⊗ I, I ⊗ I ⊗ P ⊗ I, and I ⊗ I ⊗ I ⊗ P
where again P is a Pauli matrix.

(f) If Si|ψ〉 = |ψ〉 and QSi = −SiQ, prove that Si(Q|ψ〉) = −(Q|ψ〉).
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(g) Suppose we encode a single qubit into the subspace defined by Si|ψ〉 = |ψ〉. Now suppose a malicious person
comes along and applies a Pauli operator of the form P ⊗ I ⊗ I ⊗ I, I ⊗ P ⊗ I ⊗ I, I ⊗ I ⊗ P ⊗ I, I ⊗ I ⊗ I ⊗ P ,
or I ⊗ I ⊗ I ⊗ I producing the new state |ψ′〉. Explain how determining the value of Si|ψ′〉 can tell you whether
one of the nontrivial Pauli operators was applied to |ψ〉 or whether I ⊗ I ⊗ I ⊗ I was applied to |ψ〉.

The subspace you’ve considered above is an example of a four qubit error detecting code: we can use measurements
of the eigenvalues of the Si operators to detect when a single error has happened on our encoded qubit.

Exercise 3: Decoherence-Free Subspaces

(a) Consider the following two qubit operators X2 = X ⊗ I + I ⊗X, Y2 = Y ⊗ I + I ⊗ Y and Z2 = Z ⊗ I + I ⊗ Z.
Find the two qubit state |ψ〉 which is annihilated by these three operators: X2|ψ〉 = Y2|ψ〉 = Z2|ψ〉 = 0.

(b) Suppose that we evolve a two qubit quantum system according to the Hamiltonian

H = sxX2 + syY2 + szZ2. (7)

In other words the evolution after a time t is U(t) = exp(−iHt). Prove that U(t)|ψ〉 = |ψ〉 where |ψ〉 is the state
you found in part (a).

(c) Now consider two qubits which are attached to another quantum system whose Hilbert space is H. Suppose that
the two qubits and the bath interact via the Hamiltonian

HSB = X2 ⊗BX + Y2 ⊗BY + Z2 ⊗BZ (8)

where the Bα operators act on H. Show that if we start with the two qubits in the state from part (a) and the
bath in an arbitrary state, then evolving using HSB does change the state. In other words, defining USB(t) =
exp(−iHSBt), show that USB(t)|ψ〉 ⊗ |φ〉 = |ψ〉 ⊗ |φ〉 where |ψ〉 is the state from part (a) and |φ〉 is an arbitrary
state in H. What you’ve just shown is that for couplings between the system and bath of the above form, the
state |ψ〉 is protected.

(d) Now consider the four qubit operators

X4 = X ⊗ I ⊗ I ⊗ I + I ⊗X ⊗ I ⊗ I + I ⊗ I ⊗X ⊗ I + I ⊗ I ⊗ I ⊗X

Y4 = Y ⊗ I ⊗ I ⊗ I + I ⊗ Y ⊗ I ⊗ I + I ⊗ I ⊗ Y ⊗ I + I ⊗ I ⊗ I ⊗ Y

Z4 = Z ⊗ I ⊗ I ⊗ I + I ⊗ Z ⊗ I ⊗ I + I ⊗ I ⊗ Z ⊗ I + I ⊗ I ⊗ I ⊗ Z (9)

Show that each of these operators annihilates the states |ψ〉12 ⊗ |ψ〉34, |ψ〉13 ⊗ |ψ〉24 and |ψ〉14 ⊗ |ψ〉23 where |ψ〉ij
is the state from part (a) shared between qubits i and j.

(e) Show that the states |ψ〉12 ⊗ |ψ〉34, |ψ〉13 ⊗ |ψ〉24 and |ψ〉14 ⊗ |ψ〉23 are not linearly independent.
(f) Construct a basis for the two dimensional space spanned by the states |ψ〉12⊗|ψ〉34, |ψ〉13⊗|ψ〉24 and |ψ〉14⊗|ψ〉23.
(g) Suppose we encode a qubit of information into the subspace spanned by the two basis states in part (f). If these

four qubits now interact with a bath via the Hamiltonian

H4 = X4 ⊗BX + Y4 ⊗BY + Z4 ⊗BZ (10)

then show that the quantum information encoded into this subspace is unaffected by this evolution.
The two dimensional subspace described above is an example of a decoherence-free subspace. Such subspaces exist
when the coupling between a system and its environment possess a symmetry: in this case the symmetry is that the
qubits couple collectively to the bath. Such codes avoid symmetric decoherence without the need for quantum error
correction.


