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For this problem set recall that the Pauli X, Y , and Z are

X =
[

0 1
1 0

]
, Y =

[
0 −i
i 0

]
, and Z =

[
1 0
0 −1

]
. (1)

Exercise 1: Tsirel’son’s Inequality

Suppose that A, A′, B, B′ are operators on some Hilbert space H which satisfy A2 = A′2 = B2 = B′2 = I
and [A,B] = [A,B′] = [A′, B] = [A′, B′] = 0 (where the commutator is [M,N ] = MN −NM .)
(a) Define C = AB +AB′ +A′B −A′B′. Show that C2 = 4I − [A,A′][B,B′].

Write C = A(B +B′) +A′(B −B′). Then

C2 = [A(B +B′) +A′(B −B′)] [A(B +B′) +A′(B −B′)] (2)

The A,A′ and B,B′ variables commute, so we can move them freely through each other and obtain

C2 = A2(B +B′)2 + (A′)2(B −B′)2 +AA′(B +B′)(B −B′) +A′A(B −B′)(B +B′) (3)

Now use the fact that A2 = (A′)2 = I we obtain

C2 = (B +B′)2 + (B −B′)2 +AA′(B +B′)(B −B′) +A′A(B −B′)(B +B′) (4)

Using B2 = (B′)2 = I, this becomes

C2 = 4I +AA′(B +B′)(B −B′) +A′A(B −B′)(B +B′) (5)

Using this again we obtain

C2 = 4I +AA′(B′B −BB′) +A′A(BB′ −B′B)
= 4I −AA′[B,B′] +A′[B,B′]
= 4I − [A,A′][B,B′] (6)

as desired.
(b) The sup norm of an operator M is defined as

||M ||sup = sup
|ψ〉6=0

||M |ψ〉||
|||ψ〉||

(7)

where || · || is the standard norm on our Hilbert space. Prove that

||M +N ||sup ≤ ||M ||sup + ||N ||sup (8)

and

||MN ||sup ≤ ||M ||sup||N ||sup (9)

To show the first inequality, note that

||M +N ||sup = sup
|ψ〉6=0

||(M +N)|ψ〉||
|||ψ〉||

(10)

The triangle inequality says that ||M |ψ〉+N |ψ〉|| ≤ ||M |ψ〉||+ ||N |ψ〉||, so

||M +N ||sup ≤ sup
|ψ〉6=0

||M |ψ〉||
|||ψ〉||

+
||N |ψ〉||
|||ψ〉||

(11)
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But the maximum over the sum of two dependent terms is less than the maximum over the sum of these
two terms when they are independent:

||M +N ||sup ≤ sup
|ψ〉6=0

||M |ψ〉||
|||ψ〉||

+ sup
|φ〉6=0

||N |φ〉||
|||φ〉||

(12)

Thus proving that ||M +N ||sup ≤ ||M ||sup + ||N ||sup.
We will prove ||MN ||sup ≤ ||M ||sup||N ||sup by contradiction. Assume that

||MN ||sup > ||M ||sup||N ||sup (13)

Let |ψ〉 be a state which maximizes ||MN |ψ〉||
|||ψ〉|| and define |φ〉 = N |ψ〉. Then by our assumption,

||MN ||sup > sup
|ψ1〉6=0

||M |ψ1〉||
|||ψ1〉||

sup
|ψ2〉6=0

||N |ψ2〉||
|||ψ2〉||

(14)

which by the definition of supremum is

||MN ||sup >
||M |φ〉||
|||φ〉||

||N |ψ〉||
|||ψ〉||

=
||M |φ〉||
||ψ〉||

=
||MN |ψ〉||

|ψ〉
(15)

which is a contradiction.

(c) Use these properties of the sup norm to show that

||C||sup ≤ 2
√

2 (16)

From part (a), C2 = 4I − [A,A′][B,B′]. Thus

||C2||sup = ||4I − [A,A′][B,B′]||sup (17)

Using part (b), this can be expressed as

||C2||sup ≤ ||4I||sup + ||[A,A′][B,B′]||sup ≤ 4 + ||[A′, A]||sup||[B,B′]||sup (18)

Also, using part (b), ||[M,N ]||sup ≤ ||MN ||sup + || − NM ||sup ≤ ||M ||sup||N ||sup + ||N ||sup||M ||sup =
2||M ||sup||N ||sup, so

||C2||sup ≤ 4 + 4||A′||sup||A||sup||B′||sup||B||sup (19)

But since A2 = (A′)2 = B2 = (B′)2 = I, this implies that

||C2||sup ≤ 8 (20)

Using ||C2||sup = ||C||2sup this becomes ||C||sup ≤ 2
√

2.

This is Tsirel’son’s (or Cirel’son’s) inequality. Suppose we are working on a Hilbert space of two qubits. If we take
A = A1 ⊗ I, A′ = A2 ⊗ I, B = I ⊗B1, and B′ = I ⊗B2, then this expression is

||A1 ⊗B1 +A1 ⊗B1 +A2 ⊗B1 −A2 ⊗B2||sup ≤ 2
√

2 (21)

Recall that from class we saw that for local hidden variable theories satisfy the CHSH inequality: |〈C〉| ≤ 2. So
Tsirel’son’s inequality bounds the “amount” of violation that quantum states can have over the CHSH inequality. In
fact quantum theory can saturate this bound.

Exercise 2: A Quantum Error Detecting Code

In this problem we will examine a quantum error detecting code on four qubits.
(a) Show that the three four-qubit Pauli group operators S1 = X⊗X⊗I⊗I, S2 = I⊗I⊗X⊗X, S3 = Z⊗Z⊗Z⊗Z

all commute with each other (two operators commute if AB = BA.)
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S1 and S2 commute because they act on different qubits. S1 and S3 commute since S1S3 = (XZ) ⊗
(XZ)⊗Z⊗Z = (−ZX)⊗(−ZX)⊗Z⊗Z = (ZX)⊗(ZX)⊗Z⊗Z = S3S1. Similarly S2 and S3 commute
since S2S3 = Z ⊗ Z ⊗ (XZ)⊗ (XZ) = Z ⊗ Z ⊗ (−ZX)⊗ (−ZX) = Z ⊗ Z ⊗ (ZX)⊗ (ZX) = S3S2.

(b) The subspace defined by the simultaneous equations Si|ψ〉 = |ψ〉 is two dimensional. Construct an operator
made up of a sum of products of Si operators which projects onto this subspace. Such an operator should satisfy
P |ψ〉 = |ψ〉 for |ψ〉 in the subspace and P |ψ〉 = 0 for all |ψ〉 orthogonal to states in the subspace.

Since S2
i = I, Si each have eigenvalues either +1 or −1. To project onto the +1 eigenvalues, we can use

the projector Pi = 1
2 (I + Si). To project onto the simultaneous subspace, construct the projector

P =
1
2
(I + S1)

1
2
(I + S2)

1
2
(I + S3) (22)

(c) Use the projector you constructed in the last problem to find a basis for the subspace defined by the simultaneous
equations Si|ψ〉 = |ψ〉.

From the theory of stabilizer codes this subspace will be two dimensional. Project onto the state |0000〉

P |0000〉 =
1
8
(I+S1)(I+S2)(I+S3)|0000〉 =

1
4
(I+S1)(I+S2)|0000〉 =

1
4
(|0000〉+|1100〉+|0011〉+|1111〉)

(23)
Normalize this produces on basis state:

|φ1〉 =
1
2
(|0000〉+ |1100〉+ |0011〉+ |1111〉) (24)

To obtain a second vector, start with the vector |0110〉, which is orthogonal to this state, and project:

P |0110〉 =
1
8
(I+S1)(I+S2)(I+S3)|0110〉 =

1
4
(I+S1)(I+S2)|0110〉 =

1
4
(|0110〉+|1010〉+|0101〉+|1001〉)

(25)
Normalizing, we obtain a second basis element

|φ2〉 =
1
2
(|0110〉+ |1010〉+ |0101〉+ |1001〉) (26)

(d) Find a Pauli group operator (i.e. one that can be written as a product of Pauli matrices, see problem set 1) which
commutes with each of the Si but which is not a product of the Sis (and is not identity).

An example of such a Pauli is I ⊗X ⊗X ⊗ I, which commutes with S1 and S2 since both operators are
made of I and X operators and which commutes with S3 by a similar argument to part (a).

(e) Prove that P ⊗ I ⊗ I ⊗ I where P is a Pauli matrix anti-commutes (two operators anticommute if AB = −BA)
with at least one of the elements Si. Argue why this is true for I ⊗ P ⊗ I ⊗ I, I ⊗ I ⊗ P ⊗ I, and I ⊗ I ⊗ I ⊗ P
where again P is a Pauli matrix.

We can easily check the three cases P = X, P = Y and P = Z. First note that XZ = −ZX. Thus if
P = X, then (X⊗I⊗I⊗I)S3 = −S3(X⊗I⊗I⊗I) since (X⊗I⊗I⊗I) only acts nontrivially on one qubit
and it anticommutes with S3 ont his qubit. Similarly if P = Y then (Y ⊗I⊗I⊗I)S3 = −S3(Y ⊗I⊗I⊗I)
and if P = Z then (Z ⊗ I ⊗ I ⊗ I)S1 = −S1(Z ⊗ I ⊗ I ⊗ I). We can further see that all other single
qubit Paulis anticommute with either S3 (if P = X or P = Y ) or with S1 (if P = Z and acts on the
first two qubits) or with S2 (if P = Z and acts on the second two qubits.)

(f) If Si|ψ〉 = |ψ〉 and QSi = −SiQ, prove that Si(Q|ψ〉) = −(Q|ψ〉).
By definitions, Si(Q|ψ〉) = −QSi|ψ〉 = −Q|ψ〉.

(g) Suppose we encode a single qubit into the subspace defined by Si|ψ〉 = |ψ〉. Now suppose a malicious person
comes along and applies a Pauli operator of the form P ⊗ I ⊗ I ⊗ I, I ⊗ P ⊗ I ⊗ I, I ⊗ I ⊗ P ⊗ I, I ⊗ I ⊗ I ⊗ P ,
or I ⊗ I ⊗ I ⊗ I producing the new state |ψ′〉. Explain how determining the value of Si|ψ′〉 can tell you whether
one of the nontrivial Pauli operators was applied to |ψ〉 or whether I ⊗ I ⊗ I ⊗ I was applied to |ψ〉.

From part (f), we see that if an operator anticommutes with an Sj , then it moves the state out of the
subspace defined by Sj |ψ〉 into a subspace where Sj |ψ〉 = −|ψ〉. Notice that by part (e), all single qubit
Pauli’s anticommute with at least one Sj . Thus if you determine whether you are in the +1 or −1
eigenstates of the Si, if a single Pauli has occurred, then at least one of these will be −1. If no Pauli
has occured, then you will be in the +1 eigenstate of all Si.
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The subspace you’ve considered above is an example of a four qubit error detecting code: we can use measurements
of the eigenvalues of the Si operators to detect when a single error has happened on our encoded qubit.

Exercise 3: Decoherence-Free Subspaces

(a) Consider the following two qubit operators X2 = X ⊗ I + I ⊗X, Y2 = Y ⊗ I + I ⊗ Y and Z2 = Z ⊗ I + I ⊗ Z.
Find the two qubit state |ψ〉 which is annihilated by these three operators: X2|ψ〉 = Y2|ψ〉 = Z2|ψ〉 = 0.

Express |ψ〉 = a00|00〉 + a01|01〉 + a10|10〉 + a11|11〉. Then Z2|ψ〉 = 0 implies that a00 = a11 = 0.
Also X2|ψ〉 = 0 implies that a01 + a10 = 0, or a01 = −a10. Thus, up to a global phase, the state is
1√
2
(|01〉 − |10〉).

(b) Suppose that we evolve a two qubit quantum system according to the Hamiltonian

H = sxX2 + syY2 + szZ2. (27)

In other words the evolution after a time t is U(t) = exp(−iHt). Prove that U(t)|ψ〉 = |ψ〉 where |ψ〉 is the state
you found in part (a).

exp(−iHt)|ψ〉 =
∞∑
j=0

(−iHt)j

j!
|ψ〉 =

∞∑
j=0

(−it)j

j!
Hj |ψ〉 (28)

But H|ψ〉 = (sxX2 + syY2 + szZ2)|ψ〉 = 0, so that Hj |ψ〉 = 0 if j 6= 0. Thus the only term that survives is the
j = 0 term:

exp(−iHt)|ψ〉 = H0|ψ〉 = |ψ〉 (29)

(c) Now consider two qubits which are attached to another quantum system whose Hilbert space is H. Suppose that
the two qubits and the bath interact via the Hamiltonian

HSB = X2 ⊗BX + Y2 ⊗BY + Z2 ⊗BZ (30)

where the Bα operators act on H. Show that if we start with the two qubits in the state from part (a) and the
bath in an arbitrary state, then evolving using HSB does change the state. In other words, defining USB(t) =
exp(−iHSBt), show that USB(t)|ψ〉 ⊗ |φ〉 = |ψ〉 ⊗ |φ〉 where |ψ〉 is the state from part (a) and |φ〉 is an arbitrary
state in H. What you’ve just shown is that for couplings between the system and bath of the above form, the
state |ψ〉 is protected.

exp(−iHt)(|ψ〉 ⊗ |φ〉) =
∞∑
j=0

(−iHt)j

j!
(|ψ〉 ⊗ |φ〉) =

∞∑
j=0

(−it)j

j!
Hj(|ψ〉 ⊗ |φ〉) (31)

But now H(|ψ〉 ⊗ |φ〉) = (X2 ⊗BX + Y2 ⊗BY + Z2 ⊗BZ)(|ψ〉 ⊗ |φ〉) = 0, so again the only term that
survives is the j = 0 term,

exp(−iHt)(|ψ〉 ⊗ |φ〉) = |ψ〉 ⊗ |φ〉 (32)

(d) Now consider the four qubit operators

X4 = X ⊗ I ⊗ I ⊗ I + I ⊗X ⊗ I ⊗ I + I ⊗ I ⊗X ⊗ I + I ⊗ I ⊗ I ⊗X

Y4 = Y ⊗ I ⊗ I ⊗ I + I ⊗ Y ⊗ I ⊗ I + I ⊗ I ⊗ Y ⊗ I + I ⊗ I ⊗ I ⊗ Y

Z4 = Z ⊗ I ⊗ I ⊗ I + I ⊗ Z ⊗ I ⊗ I + I ⊗ I ⊗ Z ⊗ I + I ⊗ I ⊗ I ⊗ Z (33)

Show that each of these operators annihilates the states |ψ〉12 ⊗ |ψ〉34, |ψ〉13 ⊗ |ψ〉24 and |ψ〉14 ⊗ |ψ〉23 where |ψ〉ij
is the state from part (a) shared between qubits i and j.

Let P (i) be the Pauli operator P operating on the ith qubit and identity on all other qubits. Then, let
i 6= j 6= k 6= l,

P4|ψ〉ij⊗|ψ〉kl = (P (i)+P (j)+P (k)+P (l))|ψ〉ij⊗|ψ〉kl = (P (i)+P (j))|ψ〉ij⊗|ψ〉kl+|ψ〉ij⊗(P (k)+P (l))|ψ〉kl
(34)

But, via part (a), each of these vanishes. For P ∈ {X,Y, Z} and i, j, k, l appropriately chosen, this
yields what we wish to prove.
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(e) Show that the states |ψ〉12 ⊗ |ψ〉34, |ψ〉13 ⊗ |ψ〉24 and |ψ〉14 ⊗ |ψ〉23 are not linearly independent.

−|ψ〉12 ⊗ |ψ〉34 + |ψ〉13 ⊗ |ψ〉24 + |ψ〉14 ⊗ |ψ〉23 =
1
2
(−|0101〉+ |0110〉+ |1001〉 − |1010〉)

+
1
2
(|0011〉 − |0110〉 − |1001〉+ |1100〉)

+
1
2
(|0101〉 − |0011〉 − |1100〉+ |1010〉)

= 0 (35)

Thus these vectors are not linearly independent.

(f) Construct a basis for the two dimensional space spanned by the states |ψ〉12⊗|ψ〉34, |ψ〉13⊗|ψ〉24 and |ψ〉14⊗|ψ〉23.
Take the first basis state to be |φ1〉 = |ψ〉12 ⊗ |ψ〉34. Then the second state must be a superposition of
|ψ〉13 ⊗ |ψ〉24 and |ψ〉14 ⊗ |ψ〉23

|φ2〉 = a|ψ〉13 ⊗ |ψ〉24 + b|ψ〉14 ⊗ |ψ〉23 (36)

and orthogonal to |φ1〉,

〈ψ|12 ⊗ 〈ψ|34(a|ψ〉13 ⊗ |ψ〉24 + b|ψ〉14 ⊗ |ψ〉23) = 0. (37)

This latter equation yields

1
2
(a+ b) = 0 (38)

or a = −b. Up to a global phase the second basis state is thus

|φ2〉 =
1√
2
(|ψ〉13 ⊗ |ψ〉24 − |ψ〉14 ⊗ |ψ〉23) (39)

(g) Suppose we encode a qubit of information into the subspace spanned by the two basis states in part (f). If these
four qubits now interact with a bath via the Hamiltonian

H4 = X4 ⊗BX + Y4 ⊗BY + Z4 ⊗BZ (40)

then show that the quantum information encoded into this subspace is unaffected by this evolution.

This follows via an argument nearly identical to part (c), but now using part (d). The fact that it
is a subspace doesn’t make much difference since all states in the subspace will be annihilated by the
appropriate P4 operator.

The two dimensional subspace described above is an example of a decoherence-free subspace. Such subspaces exist
when the coupling between a system and its environment possess a symmetry: in this case the symmetry is that the
qubits couple collectively to the bath. Such codes avoid symmetric decoherence without the need for quantum error
correction.


