Quantum Computing and Information - Problem Set 1

Exercise 1. Polarization rotation A polarizer (or polarizing filter) is understood classically to permit one polarization of light (say, horizontal polarization) to pass through, while blocking orthogonally polarized light. For single photons, a polarizer performs a measurement, and either absorbs or transmits the photon depending on the outcome. More concretely, define

$$
\left|P_{\theta}\right\rangle=\cos (\theta)|0\rangle+\sin (\theta)|1\rangle .
$$

One can check that $\left\{\left|P_{\theta}\right\rangle,\left|P_{\theta+\pi / 2}\right\rangle\right\}$ forms an orthonormal basis for \mathbb{C}^{2}. A linear polarizer at angle θ acts on a photon by measuring in the $\left\{\left|P_{\theta}\right\rangle,\left|P_{\theta+\pi / 2}\right\rangle\right\}$ basis and either transmitting the photon (upon outcome $\left|P_{\theta}\right\rangle$) or absorbing it (upon outcome $\left|P_{\theta+\pi / 2}\right\rangle$).
a) Suppose a photon is prepared in state $\left|P_{\theta_{1}}\right\rangle$ and is sent through a polarizer at angle θ_{2}. What is the probability that it is transmitted (i.e. not absorbed)?
b) Now suppose we insert a polarizer at angle θ_{3} between the photon source and the polarizer at angle θ_{2}. Thus, the photon will first encounter the polarizer at angle θ_{3} and then, if it is not absorbed, it will attempt to pass through the polarizer at angle θ_{2}. What is the probabilitity that it is successfully transmitted by both polarizers? Are there any choices of $\theta_{1}, \theta_{2}, \theta_{3}$ such that this is ever larger than the probability in part (a)?
c) Consider a photon initially in state $|0\rangle$ that passes through N polarizers. The $j^{\text {th }}$ polarizer will be at angle $\frac{\pi}{2} \frac{j}{N}$. Show that the probability of being transmitted through all the polarizers is $\geq 1-c / N$ for some constant c.

Exercise 2. Qubit states and operators

The purpose of this exercise is to connect single-qubit states and unitaries to physical rotations of spin- $1 / 2$ particles.
The Pauli operators $\sigma_{0}, \sigma_{1}, \sigma_{2}, \sigma_{3}$ on \mathbb{C}^{2} are defined by

$$
\sigma_{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) \quad \sigma_{1}=\sigma_{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{2}=\sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{3}=\sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

a) Up to an overall phase, any state $|\psi\rangle \in \mathbb{C}^{2}$ can be written as

$$
\begin{equation*}
|\psi\rangle=\cos \left(\frac{\theta}{2}\right) e^{-i \frac{\phi}{2}}|0\rangle+\sin \left(\frac{\theta}{2}\right) e^{i \frac{\phi}{2}}|1\rangle . \tag{1}
\end{equation*}
$$

Calculate $\langle\psi| \sigma_{x}|\psi\rangle,\langle\psi| \sigma_{y}|\psi\rangle$ and $\langle\psi| \sigma_{z}|\psi\rangle$.
b) Show that $\sigma_{i}^{2}=I$ for $i=0,1,2,3$.
c) For $j, k, l \in\{1,2,3\}$, define the antisymmetric tensor $\epsilon_{j k l}$ by $\epsilon_{123}=\epsilon_{231}=\epsilon_{312}=1, \epsilon_{213}=\epsilon_{321}=\epsilon_{132}=$ -1 , and $\epsilon_{j k l}=0$ whenever two of j, k, l are equal (i.e. all other cases). Prove that for $j, k \in\{1,2,3\}$

$$
\begin{equation*}
\sigma_{j} \sigma_{k}=\delta_{j k} \sigma_{0}+i \sum_{l=1}^{3} \epsilon_{j k l} \sigma_{l} \tag{2}
\end{equation*}
$$

For example $\sigma_{1} \sigma_{2}=i \sigma_{3}, \sigma_{2} \sigma_{3}=i \sigma_{2}, \sigma_{2} \sigma_{1}=-i \sigma_{3}, \ldots$ Hint: Use (b) to reduce the number of calculations. The antisymmetric tensor also appears in cross products: if $\vec{v}, \vec{w} \in \mathbb{R}^{3}$ then $(\vec{v} \times \vec{w})_{i}=$ $\sum_{j, k} \epsilon_{i j k} v_{j} w_{k}$.
d) For a vector $\vec{v} \in \mathbb{R}^{3}$ define $\vec{v} \cdot \vec{\sigma}:=v_{1} \sigma_{1}+v_{2} \sigma_{2}+v_{3} \sigma_{3}$. For operators A, B, define $[A, B]:=A B-B A$. Show that $(\vec{v} \cdot \vec{\sigma})^{2}=\|\vec{v}\|^{2} \sigma_{0}$ and that $[\vec{v} \cdot \vec{\sigma}, \vec{w} \cdot \vec{\sigma}]=2 i(\vec{v} \times \vec{w}) \cdot \vec{\sigma}$.
e) Let \vec{v} be a unit vector and α a real number. Prove that

$$
e^{i \alpha \vec{v} \cdot \vec{\sigma}}=\cos (\alpha) \sigma_{0}+i \sin (\alpha) \vec{v} \cdot \vec{\sigma}
$$

f) Again let \vec{v} be a unit vector and α a real number. Prove that

$$
\begin{equation*}
e^{i \frac{\alpha}{2} \vec{v} \cdot \vec{\sigma}}(\vec{w} \cdot \vec{\sigma}) e^{-i \frac{\alpha}{2} \vec{v} \cdot \vec{\sigma}}=(\cos (\alpha) \vec{w}+\sin (\alpha) \vec{w} \times \vec{v}+(1-\cos (\alpha))(\vec{w} \cdot \vec{v}) \vec{v}) \cdot \vec{\sigma} \tag{3}
\end{equation*}
$$

This is the formula for rotating the vector \vec{w} an angle α about the axis \vec{v}.
g) Let $w_{1}=\sin (\theta) \cos (\phi), w_{2}=\sin (\theta) \sin (\phi), w_{3}=\cos (\theta)$ and define $|\psi\rangle$ as in Eq. (1). Show that $\vec{w} \cdot \vec{\sigma}=2|\psi\rangle\langle\psi|-I$. Use this fact and Eq. (3) to interpret

$$
e^{i \frac{\alpha}{2} \vec{v} \cdot \vec{\sigma}}|\psi\rangle
$$

as a 3 -dimensional rotation.

Exercise 3. Entanglement

a) Prove that the state $\frac{|0,0\rangle+|1,1\rangle}{\sqrt{2}}$ is not equal to $|\alpha\rangle \otimes|\beta\rangle$ for any $|\alpha\rangle,|\beta\rangle \in \mathbb{C}^{2}$. Here, $|0,0\rangle$ is shorthand for $|0\rangle \otimes|0\rangle$ and similarly for $|1,1\rangle$.
b) Let $\mathcal{U}(d)$ denote the set of $d \times d$ unitary matrices. The singular value decomposition states that for any $d_{1} \times d_{2}$ matrix A there exists a $X \in \mathcal{U}\left(d_{1}\right), Y \in \mathcal{U}\left(d_{2}\right)$ and a $d_{1} \times d_{2}$ diagonal matrix Λ such that $A=X \Lambda Y$. The entries of Λ are real, nonnegative, and unique up to reordering. Use this to prove that for any $|\psi\rangle \in \mathbb{C}^{d_{1} d_{2}}$ there exists $U \in \mathcal{U}\left(d_{1}\right), V \in \mathcal{U}\left(d_{2}\right)$ and nonnegative real numbers $\lambda_{1}, \ldots, \lambda_{d}$ (with $\left.d=\min \left(d_{1}, d_{2}\right)\right)$ such that

$$
\begin{equation*}
(U \otimes V)|\psi\rangle=\sum_{i=1}^{d} \lambda_{i}|i\rangle \otimes|i\rangle \tag{4}
\end{equation*}
$$

c) Show that for any $|\psi\rangle \in \mathbb{C}^{d_{1} d_{2}}$ there exist nonnegative real numbers $\lambda_{1}, \ldots, \lambda_{d}$ and orthonormal sets $\left|\alpha_{1}\right\rangle, \ldots,\left|\alpha_{d}\right\rangle \in \mathbb{C}^{d_{1}}$ and $\left|\beta_{1}\right\rangle, \ldots,\left|\beta_{d}\right\rangle \in \mathbb{C}^{d_{2}}$ such that

$$
\begin{equation*}
|\psi\rangle=\sum_{i=1}^{d} \lambda_{i}\left|\alpha_{i}\right\rangle \otimes\left|\beta_{i}\right\rangle \tag{5}
\end{equation*}
$$

