
Quantum Computing and Information - Problem Set 2 Due Mon, Feb 7, 2011

Exercise 1. Constructing a Toffoli gate from CNOT and single-qubit gates This exercise will prove
that two-qubit unitary gates are universal. For a single-qubit unitary U , define the controlled-U operation
to be CU := |0〉〈0| ⊗ I + |1〉〈1| ⊗ U . Note that cnot = CX . To indicate the systems that these gates act on
we use the notation [CX ]i,j to mean a controlled-U operation where qubit i is the control and qubit j is the
target.

a) Show that

[CU ]1,3[CX ]2,1[C†U ]13[CX ]21[CU ]23

implements a doubly-controlled U2: i.e. applies [U2]3 only if qubits 1 and 2 are both in the |1〉 state.
Thus if U = eiϕ

√
X for some ϕ then this implements gate that is related to the Toffoli gate.

b) Now we need to construct a controlled-
√
X gate from CNOTs and single-qubit gates. Show that

[V ]3[CX ]1,3[V †]3[W ]3[CX ]1,3[W †]3 = [CU ]1,3,

where U = V XV †WXW †.

c) Find V,W such that V XV †WXW † = eiϕ
√
X for some ϕ. (Part (d) of question 2 on problem set 1

may help here, although you will need to calculate (~v · ~σ) · (~w · ~σ) rather than the commutator.)

Exercise 2. The hybrid argument The operator norm is defined as follows. If M is a matrix, then define

‖M‖ := max | 〈α|M |β〉 |,

where the max is taken over all unit vectors |α〉 and |β〉.

a) Show that the operator norm obeys the triangle inequality: ‖A+B‖ ≤ ‖A‖+ ‖B‖.

b) Show that the norm is right and left unitarily-invariant. That is, for any unitary U and any matrix
M , ‖M‖ = ‖MU‖ = ‖UM‖.

c) Suppose that we would like to perform a quantum circuit U(T ) := U1U2 · · ·UT but only are able to apply

each gate approximately. Thus, we instead perform Ũ(T ) := Ũ1 · · · ŨT for some unitaries Ũ1, . . . , ŨT

satisfying ‖Ui − Ũi‖ ≤ εi for i = 1, . . . , T . Prove that ‖U(T ) − Ũ(T )‖ ≤ ε(T ) :=
∑T
i=1 εi.

Exercise 3. A lazier Quantum Fourier Transform (QFT)

When implementing the QFT, a lot of time is spent on Rk = exp( 2πi|1〉〈1|
2k

) rotations that, for large values of
k, are very close to I. Suppose we replace Rk with the identity whenever k ≥ k0 for some cut-off value k0.

a) The standard QFT uses O(n2) gates. Give an asymptotic estimate for the number of gates in the lazy
QFT described here, noting that identity gates don’t count.

b) Give an upper bound on the error in the resulting approximate QFT.

c) How many gates suffice to achieve an error that scales as 1/n100?

Exercise 4. Phase estimation

a) Suppose we start with the state

1√
2n

2n−1∑
x=0

|x〉 , (1)

apply the conditional phase
∑2n−1
x=0 e2πiϕx|x〉〈x| and then the inverse QFT 1√

2n

∑N−1
x,y=0 e

− 2πixy
N |x〉 〈y|.

Finally we measure the state in the computational basis and obtain outcome y. Calculate Pr [y].



b) Assume that 0 ≤ ϕ ≤ 1. Define ∆ := y/N − ϕ and δ = min(|∆|, 1 − |∆|). This definition is meant
to express the idea that δ is the error in the phase estimation procedure. Show that there exists a
constant c > 0 such that

Pr

[
δ ≥ k

N

]
≤ c

k
,

for any positive integer k. Hint: For α ≥ 0, it may be helpful to use the bounds α−α3/6 ≤ sinα ≤ α .

c) Optional: Now suppose we do the same procedure but replace the state in Eq. (1) with

1√
2n−1

2n−1∑
x=0

sin
π(x+ 1

2 )

2n
|x〉 . (2)

Check that this state is normalized, calculate Pr [y] for this strategy, and show that it satisfies

Pr

[
δ ≥ k

N

]
≤ c

k3
,

for any positive integer k and for a possibly different constant c. Thus, while the width of this
distribution cannot be substantially improved, the tails can be made to drop off faster. This question
relates to the construction of optimal quantum clocks.

Exercise 5. Collision detection
Suppose we are given a black-box function f : {0, 1}n → {0, 1}n−1 that is 2-to-1: i.e. exactly two inputs go to
each output. Our goal is to find x, y ∈ {0, 1}n such that f(x) = f(y). However, unlike in Simon’s algorithm,
we now have no promise about any periodicity of f . As a result it turns out that quantum computers cannot
achieve exponential speedups in this case. Define N = 2n.

a) Give a classical algorithm that finds a collision with high probability (≥ 1/2) using only O(
√
N) queries

to f .

b) Suppose now that only O(N1/3 log(N)) bits of memory are available. (Note that log(N) bits can store
one integer between 1 and N .) Now describe a classical algorithm that finds a collision with high
probability that uses O(N2/3) queries.

c) Give a quantum algorithm that finds a collision in O(
√
N) queries and uses O(log(N)) space. Hint:

Use Grover’s algorithm.

d) Give a quantum algorithm that finds a collision in O(M +
√
N/M) queries and uses O(M log(N))

space for any choice of M . Choosing M = N1/3 will then yield a Õ(N1/3)-query algorithm, where Õ
neglects log factors. Hint: combine parts (b) and (c).

Exercise 6. Optional, but recommended: Quantum counting
We are given a black-box function f : {0, 1}n → {0, 1} and would like to estimate |f−1(1)|: that is, the
number of x ∈ {0, 1}n such that f(x) = 1. Let M = |f−1(1)| and N = 2n.

a) Suppose we are given access to Uf =
∑
x∈{0,1}n

∑
y∈{0,1} |x〉〈x| ⊗ |y ⊕ f(x)〉 〈y| . We would like to use

Uf to apply the phase (−1)f(x) conditioned on an additional qubit. This operation is defined as

Vf = I ⊗ |0〉〈0|+
∑

x∈{0,1}n
(−1)f(x)|x〉〈x| ⊗ |1〉〈1|.

Show how we can use Uf to implement Vf .

b) Define |s〉 = 1√
2n

∑N−1
x=0 |x〉. Define the Grover iteration

G = (I − 2|s〉〈s|) ·
∑

x∈{0,1}n
(−1)f(x)|x〉〈x|.

Find the eigenvalues of G.



c) Show how the construction of part (a) can be used to perform

T−1∑
t=0

|t〉〈t| ⊗Gt

using T − 1 queries to Uf .

d) Assume that M divides N . Show that quantum phase estimation can be used to determine M/N up
to accuracy O(1/T ) with high probability. How large does T have to be in order to have a ≥ 1/2
probability of determining M exactly? How many queries are necessary to achieve this classically?


