
Quantum Computing and Information - Problem Set 3 Due Wed, Feb 23, 2011

Exercise 1. Prove that tr ρ2 ≤ 1 with equality iff ρ is pure (i.e. of the form |ψ〉〈ψ|.

Exercise 2. Prove that the extreme points of D(Cd) are the pure states.

Exercise 3. Alice and Bob share the state

|ψ〉AB =
dA∑
i=1

dB∑
j=1

Ai,j |i〉A ⊗ |j〉B .

Calculate Bob’s reduced density matrix. Like the expression derived in class for Alice’s reduced density
matrix, your expression should not have any subscripts or summation signs in it.

Exercise 4. Bit commitment Alice and Bob have been playing a grueling game of chess and by the end
of the first day, it’s Alice’s move and they’ve only reached the midgame. Alice has only two choices of move
(0 or 1), but if she tells Bob then he’ll be able to spend all night planning his response. On the other hand,
if Alice doesn’t tell him her move until morning then she could get an unfair advantage by thinking about
her move all night.

Bob suggests that Alice could write her move on a piece of paper and give it to him in a sealed envelope.
But Alice knows that Bob could easily steam the envelope open, read the paper and reseal the envelope.
Instead she proposes to use quantum mechanics.

Her idea is to prepare one of two distinguishable states |ψ0〉AB or |ψ1〉AB and give system B to Bob at
night, keeping A for herself. Thus she commits to her bit a ∈ {0, 1}. Then she reveals a in the morning by
sending system A to Bob and he performs a measurement to determine whether the state of AB is |ψ0〉 or
|ψ1〉.

Ideally the protocol would be concealing if Bob could not learn any information about a after Alice
commits her bit and before she reveals it (i.e. from system B alone). On the other hand, it should also be
binding, meaning that after committing her bit, Alice is unable to change its value.

Show that both properties cannot simultaneously hold: no commitment protocol can be both concealing
and binding.

Exercise 5. Separable states

a) Let S be a set in Rd. Prove that any x ∈ conv(S) can be written as a convex combination of d + 1
points in S. That is, there exist p1, . . . , pd+1 ≥ 0, y1, . . . , yd+1 ∈ S such that

∑d+1
i=1 pi = 1 and

x =
d+1∑
i=1

piyi.

Hint: Suppose that x =
∑m
i=1 piyi for some m > d + 1. Then prove the existence of a vector q ∈ Rm

satisfying
∑m
i=1 qi = 0 and

∑m
i=1 qiyi = 0 and consider replacing p with p− tq for some cleverly chosen

t ∈ R.

b) Let SEP(dA, dB) ⊂ D(CdA ⊗ CdB ) denote the set of separable states, defined to be the set of states
ρAB that can be written in the form

ρAB =
∑
i

piσ
A
i ⊗ ωBi ,

where
∑
i pi = 1, each pi ≥ 0, σi ∈ D(CdA) and ωi ∈ D(CdB ). We call states of the form σ⊗ω product

states and can equivalently say that separable states are the convex hull of product states. States that
are not separable are said to be entangled.

Prove that any ρAB ∈ SEP(dA, dB) can be written as a convex combination of d2
Ad

2
B product pure

states.



Exercise 6. Trace distance Suppose that you are given one of two possible d-dimensional states σ1 or σ2,
with probabilities p1 and p2 = 1− p1 respectively. Your task is to perform a two-outcome measurement and
then try to guess which state you had been given, minimising the probability of error.
If the measurement elements are nonnegative Hermitian matrices M1 and M2 = I−M1 then the probability
of guessing wrong is

Perr = p1 tr(σ1M2) + p2 tr(σ2M1).

a) Show that

Perr = p1 −
d∑
i=1

λi 〈i|M1 |i〉 ,

where |i〉 denotes the orthonormal basis of eigenstates of the Hermitian operator p2σ2 − p1σ1 and the
λi are the corresponding eigenvalues.

b) Find the nonnegative operator M1 that minimizes Perr. Show that the resulting error probability is
Perr,opt = p1 −

∑
i:λi<0 |λi|. Hint: Express M1 in the |i〉 basis.

c) For a Hermitian matrix A, define |A|, the absolute value of A, as follows: write A = UDU† for

D =



λ1 0 0 · · · 0
0 λ2 0 · · · 0

0 0
. . . 0 0

0 . . . λd


and U unitary, and then

|A| = U



|λ1| 0 0 · · · 0
0 |λ2| 0 · · · 0

0 0
. . . 0 0

0 . . . |λd|


U†.

Express the trace norm ‖p2σ2 − p1σ1‖1 := tr |p2σ2 − p1σ1| in terms of the eigenvalues λi. Use this,
together with the fact that tr(p2σ2 − p1σ1) =

∑
i λi = p2 − p1, to express Perr,opt as a function of

‖p2σ2 − p1σ1‖1.

d) Evaluate Perr,opt in the following cases:

i) p1 = 1, p2 = 0 and σ1, σ2 are arbitrary.

ii) p1 = p2 = 1/2, σ1 = |ψ1〉〈ψ1|, σ2 = |ψ2〉〈ψ2|, with |ψ1〉 = cos(θ) |0〉 + sin(θ) |1〉 and |ψ2〉 =
sin(θ) |0〉+ cos(θ) |1〉. Check that your answer makes sense when θ is 0 or π/4.

Exercise 7. Purifications Let ρA be a density matrix and |ψ〉AB an arbitrary purification of ρ.

a) Consider a decomposition ρ =
∑
i pi|ϕi〉〈ϕi|, where |ϕi〉 are not necessarily orthogonal to each other,

and {pi} is a probability distribution. Find a measurement on B such that when applied to half of |ψ〉
outcome i occurs with probability pi and Alice’s residual state is |ϕi〉.

b) What if we decompose ρ into ρ =
∑
i piσi for general density matrices σi? Is it still possible to find a

measurement on B such that outcome i occurs with probability pi and the residual state for Alice is
σi?



c) Let N be a quantum operation. The entanglement fidelity measures how well it approximates the
identity on ensembles with density matrix ρ, and is defined

Fe(N , ρ) :=
√
〈ψ| (N ⊗ id)(ψ) |ψ〉,

where |ψ〉 is an arbitrary purification of ρ and ψ := |ψ〉〈ψ|. Prove that Fe does not depend on the
purification chosen, and therefore that Fe is well defined.

d) Prove that
∑
i pi 〈ϕi| N (ϕi) |ϕi〉 ≥ Fe for any ensemble satisfying ρ =

∑
i piϕi.


