
Quantum Computing and Information - Problem Set 1 Solutions Due Wed, Jan
19, 2011

Exercise 1. Polarization rotation A polarizer (or polarizing filter) is understood classically to permit
one polarization of light (say, horizontal polarization) to pass through, while blocking orthogonally polarized
light. For single photons, a polarizer performs a measurement, and either absorbs or transmits the photon
depending on the outcome. More concretely, define

|Pθ〉 = cos(θ) |0〉+ sin(θ) |1〉 .

One can check that {|Pθ〉 ,
∣∣Pθ+π/2〉} forms an orthonormal basis for C2. A linear polarizer at angle θ acts

on a photon by measuring in the {|Pθ〉 ,
∣∣Pθ+π/2〉} basis and either transmitting the photon (upon outcome

|Pθ〉) or absorbing it (upon outcome
∣∣Pθ+π/2〉).

a) Suppose a photon is prepared in state |Pθ1〉 and is sent through a polarizer at angle θ2. What is the
probability that it is transmitted (i.e. not absorbed)?

b) Now suppose we insert a polarizer at angle θ3 between the photon source and the polarizer at angle
θ2. Thus, the photon will first encounter the polarizer at angle θ3 and then, if it is not absorbed, it
will attempt to pass through the polarizer at angle θ2. What is the probabilitity that it is successfully
transmitted by both polarizers? Are there any choices of θ1, θ2, θ3 such that this is ever larger than the
probability in part (a)?

c) Consider a photon initially in state |0〉 that passes through N polarizers. The jth polarizer will be at
angle π

2
j
N . Show that the probability of being transmitted through all the polarizers is ≥ 1 − c/N for

some constant c.

a) The probability of being transmitted is | 〈Pθ1 |Pθ2〉 |2 = (cos(θ1) cos(θ2)− sin(θ1) sin(θ2))2 = cos2(θ2 −
θ1).

b) The photon is transmitted through the first polarizer with probability cos2(θ3−θ1). Assuming it is not
absorbed, it emerges with the state |Pθ3〉. In this case, it is transmitted through the second polarizer
with probability cos2(θ3 − θ2), so the total probability is

cos2(θ1 − θ3) cos2(θ3 − θ2).

If θ1 = 0, θ2 = π/2, θ3 = π/4, then the probability in part (a) is 0 and the probability in part (b) is
1/4.

c) This probability is cos2N
(
π
2N

)
. Since cos(x) ≥ 1− x2

2 , we have

cos2N
( π

2N

)
≥
(

1− π2

8N2

)2N

≥ 1− π2

4N
.

The second inequality here is known as the union bound and can be stated as
∏N
i=1(1−xi) ≥ 1−

∑N
i=1 xi.

It holds whenever 0 ≤ xi ≤ 1 and can be proved by induction on N .

Exercise 2. Qubit states and operators
The purpose of this exercise is to connect single-qubit states and unitaries to physical rotations of spin-1/2
particles.
The Pauli operators σ0, σ1, σ2, σ3 on C2 are defined by

σ0 =

(
1 0
0 1

)
σ1 = σx =

(
0 1
1 0

)
σ2 = σy =

(
0 −i
i 0

)
σ3 = σz =

(
1 0
0 −1

)



a) Up to an overall phase, any state |ψ〉 ∈ C2 can be written as

|ψ〉 = cos

(
θ

2

)
e−i

φ
2 |0〉+ sin

(
θ

2

)
ei

φ
2 |1〉 . (1)

Calculate 〈ψ|σx |ψ〉, 〈ψ|σy |ψ〉 and 〈ψ|σz |ψ〉.

b) Show that σ2
i = I for i = 0, 1, 2, 3.

c) For j, k, l ∈ {1, 2, 3}, define the antisymmetric tensor εjkl by ε123 = ε231 = ε312 = 1, ε213 = ε321 =
ε132 = −1, and εjkl = 0 whenever two of j, k, l are equal (i.e. all other cases). Prove that for
j, k ∈ {1, 2, 3}

σjσk = δjkσ0 + i

3∑
l=1

εjklσl. (2)

For example σ1σ2 = iσ3, σ2σ3 = iσ2, σ2σ1 = −iσ3, . . .. Hint: Use (b) to reduce the number of
calculations. The antisymmetric tensor also appears in cross products: if ~v, ~w ∈ R3 then (~v × ~w)i =∑
j,k εijkvjwk.

d) For a vector ~v ∈ R3 define ~v · ~σ := v1σ1 + v2σ2 + v3σ3. For operators A,B, define [A,B] := AB−BA.
Show that

(~v · ~σ)2 = ‖~v‖2σ0 (3)

[~v · ~σ, ~w · ~σ] = 2i(~v × ~w) · ~σ. (4)

e) Let ~v be a unit vector and α a real number. Prove that

eiα~v·~σ = cos(α)σ0 + i sin(α)~v · ~σ. (5)

f) Again let ~v be a unit vector and α a real number. Prove that

ei
α
2 ~v·~σ(~w · ~σ)e−i

α
2 ~v·~σ = (cos(α)~w + sin(α)~w × ~v + (1− cos(α))(~w · ~v)~v) · ~σ. (6)

This is the formula for rotating the vector ~w an angle α about the axis ~v.

g) Let w1 = sin(θ) cos(φ), w2 = sin(θ) sin(φ), w3 = cos(θ) and define |ψ〉 as in Eq. (1). Show that
~w · ~σ = 2|ψ〉〈ψ| − I. Use this fact and Eq. (6) to interpret

ei
α
2 ~v·~σ |ψ〉

as a 3-dimensional rotation.

a) First note that cos
(
θ
2

)
e−i

φ
2 〈0|+ sin

(
θ
2

)
ei

φ
2 〈1| . Then

〈ψ|σx |ψ〉 =

(
cos

(
θ

2

)
e−i

φ
2 〈0|+ sin

(
θ

2

)
ei

φ
2 〈1|

)
σx

(
cos

(
θ

2

)
ei

φ
2 |0〉+ sin

(
θ

2

)
e−i

φ
2 |1〉

)
=

(
cos

(
θ

2

)
e−i

φ
2 〈0|+ sin

(
θ

2

)
ei

φ
2 〈1|

)(
cos

(
θ

2

)
ei

φ
2 |1〉+ sin

(
θ

2

)
e−i

φ
2 |0〉

)
= cos(θ/2) sin(θ/2)e−iφ + sin(θ/2) cos(θ/2)eiφ

= cos(θ/2) sin(θ/2)2 cos(φ)

= sin(θ) cos(φ).



Next

〈ψ|σy |ψ〉 =

(
cos

(
θ

2

)
e−i

φ
2 〈0|+ sin

(
θ

2

)
ei

φ
2 〈1|

)(
i cos

(
θ

2

)
ei

φ
2 |1〉 − i sin

(
θ

2

)
e−i

φ
2 |0〉

)
= sin(θ/2) cos(θ/2)(ieiφ − ie−iφ)

= sin(θ/2) cos(θ/2)(−2 sin(φ))

= − sin(θ) sin(φ)

Finally 〈ψ|σz |ψ〉 = cos2(θ/2)− sin2(θ/2) = cos(θ).

Together, these correspond to the (x, y, z) coordinates of a point on the sphere with latitude θ and
longtude −φ.

b) This involves three direct calculations:(
0 1
1 0

)
·
(

0 1
1 0

)
=

(
1 0
0 1

) (
0 −i
i 0

)
·
(

0 −i
i 0

)
=

(
1 0
0 1

) (
1 0
0 −1

)
·
(

1 0
0 −1

)
=

(
1 0
0 1

)
Alternatively, you can use the fact that σ1σ2σ3 = iσ0, that σ2

i = 1 and that each σi = σ†i to construct
all of the desired relations.

c) Given the result from (b), we still need to show

σ1σ2 = iσ3 (7a)

σ2σ3 = iσ1 (7b)

σ3σ1 = iσ2 (7c)

σ2σ1 = −iσ3 (7d)

σ3σ2 = −iσ1 (7e)

σ1σ3 = −iσ2 (7f)

One possibility is to do six matrix multiplications. Here is a slightly easier method. Start by proving
Eq. (7a) with a direct calculation

σ1σ2 =

(
0 1
1 0

)
·
(

0 −i
i 0

)
=

(
i 0
0 −i

)
= iσ3.

Now we can leverage this using (b). Multiply both sides by σ1 on the left and obtain σ2
1σ2 = iσ1σ3.

Replacing σ2
1σ2 = σ2 and multiplying both sides by −i proves Eq. (7f). Now right-multiply Eq. (7f) by

σ3 to obtain σ1 = σ1σ
2
3 = −iσ2σ3. Multiplying by i proves Eq. (7b). Next, left-multiply Eq. (7b) by

σ2 to find σ3 = iσ2σ1, implying Eq. (7d). Right-multiply Eq. (7d) by σ1 to find σ3σ1 = iσ2, proving
Eq. (7c). Left-multiply Eq. (7c) by σ3 to obtain σ1 = iσ3σ2, implying Eq. (7e). This completes the
proof.

d)

(~v·~σ)2 =

3∑
i=1

viσi

3∑
j=1

vjσj =

3∑
i=1

3∑
j=1

vivjσiσj =

3∑
i=1

3∑
j=1

vivj(δi,jσ0+

3∑
k=1

iεijkσk) =

3∑
i=1

v2i σ0+i

3∑
i=1

3∑
j=1

3∑
k=1

εijkσk.

We claim this second term is zero. This is because

3∑
i=1

3∑
j=1

3∑
k=1

εijkσk =

3∑
i=1

3∑
j=1

3∑
k=1

−εjikσk. = −
3∑
i=1

3∑
j=1

3∑
k=1

εijkσk.

Thus (~v · ~σ)2 =
∑3
i=1 v

2
i σ0 = ‖~v‖2σ0.



Next

[~v · ~σ, ~w · ~σ] =

3∑
i=1

3∑
j=1

viwj(σiσj − σjσi)

=

3∑
i=1

3∑
j=1

viwj

(
(δij − δji)σ0 + i

3∑
k=1

(εijk − εjik)σk

)

= 2i

3∑
i=1

3∑
j=1

3∑
k=1

viwjεijkσk

= 2i

3∑
k=1

(~v × ~w)kσk

= 2i(~v × ~w) · ~σ

e) Since (~v ·~σ)2 = ‖~v‖2σ0 = σ0, then for any nonnegative integer k, we have (~v ·~σ)2k = σ0 and (~v ·~σ)2k+1 =
~v · ~σ. Thus

eiα~v·~σ =
∑
n≥0

(iα~v · ~σ)n

n!
=
∑
k≥0

(−1)kα2k

(2k)!
σ0 + i

∑
k≥0

(−1)kα2k+1

(2k + 1)!
~v · ~σ = cos(α)σ0 + i sin(α)~v · ~σ,

where we have used the Taylor expansions of ex =
∑
n≥0 x

n/n!, cos(x) =
∑
n≥0(−1)nx2n/(2n)! and

sin(x) =
∑
n≥0(−1)nx2n+1/(2n+ 1)!.

f) First expand out the exponentials using Eq. (5).

ei
α
2 ~v·~σ(~w · ~σ)e−i

α
2 ~v·~σ =

(
cos
(α

2

)
σ0 + i sin

(α
2

)
~v · ~σ

)
(~w · ~σ)

(
cos
(α

2

)
σ0 − i sin

(α
2

)
~v · ~σ

)
(8)

= cos2
(α

2

)
~w · ~σ (9)

+ i sin
(α

2

)
cos
(α

2

)
((~v · ~σ)(~w · ~σ)− (~w · ~σ)(~v · ~σ)) (10)

− sin2
(α

2

)
(~v · ~σ)(~w · ~σ)(~v · ~σ). (11)

To analyse Eq. (10), we note that the term in brackets is [(~v ·~σ), (~w ·~σ)] and use Eq. (4). For Eq. (11),
we use the fact that

(~a · ~σ)(~b · ~σ) = [~a · ~σ,~b · ~σ] + (~b · ~σ)(~a · ~σ) (12)

to simplify

(~v · ~σ)(~w · ~σ)(~v · ~σ) = ([(~v · ~σ), (~w · ~σ)] + (~w · ~σ)(~v · ~σ)) (~v · ~σ) using Eq. (12)

= [(~v · ~σ), (~w · ~σ)](~v · ~σ) + (~w · ~σ)(~v · ~σ)(~v · ~σ)

= [(~v · ~σ), (~w · ~σ)](~v · ~σ) + (~w · ~σ) using Eq. (3)

= [[(~v · ~σ), (~w · ~σ)], (~v · ~σ)] + (~v · ~σ)[(~v · ~σ), (~w · ~σ)] + (~w · ~σ) using Eq. (12)

= [[(~v · ~σ), (~w · ~σ)], (~v · ~σ)] + (~v · ~σ)(~v · ~σ)(~w · ~σ)− (~v · ~σ)(~w · ~σ)(~v · ~σ) + (~w · ~σ)

= [[(~v · ~σ), (~w · ~σ)], (~v · ~σ)]− (~v · ~σ)(~w · ~σ)(~v · ~σ) + 2(~w · ~σ) using Eq. (3)

Rearranging, we find that

(~v · ~σ)(~w · ~σ)(~v · ~σ) =
1

2
[[(~v · ~σ), (~w · ~σ)], (~v · ~σ)] + ~w · ~σ

= i[(~v × ~w) · ~σ,~v · ~σ] + ~w · ~σ
= −2((~v × ~w)× ~v) · ~σ + ~w · ~σ
= −2(~w − (~w · ~v)~v) · ~σ + ~w · ~σ
= 2(~w · ~v)~v · ~σ − ~w · ~σ



Putting this together, we find that

ei
α
2 ~v·~σ(~w · ~σ)e−i

α
2 ~v·~σ = (cos(α)~w + sin(α)~w × ~v + (1− cos(α))(~w · ~v)~v) · ~σ.

This is the formula for rotating the vector ~w an angle α about the axis ~v.

g)

|ψ〉〈ψ| = cos2
(
θ

2

)
|0〉〈0|+ sin2

(
θ

2

)
|1〉〈1|+ cos

(
θ

2

)
sin

(
θ

2

)(
e−iφ |1〉 〈0|+ e−iφ |0〉 〈1|

)
=
I

2
+

cos(θ)

2
σ3 + cos

(
θ

2

)
sin

(
θ

2

)(
e−iφ |1〉 〈0|+ e−iφ |0〉 〈1|

)
=
I

2
+

cos(θ)

2
σ3 + cos

(
θ

2

)
sin

(
θ

2

)
(cos(φ)(|1〉 〈0|+ |0〉 〈1|) + i sin(φ)(|1〉 〈0| − |0〉 〈1|))

=
I

2
+

cos(θ)

2
σ3 +

sin(θ)

2
(cos(φ)σ1 + sin(φ)σ2)

=
I + ~w · ~σ

2
.

Rearranging yields ~w · ~σ = 2|ψ〉〈ψ| − I.

Next, let |ϕ〉 = ei
α
2 ~v·~σ |ψ〉. Then

|ϕ〉〈ϕ| = ei
α
2 ~v·~σ|ψ〉〈ψ|e−iα2 ~v·~σ = ei

α
2 ~v·~σ

~w · ~σ
2

e−i
α
2 ~v·~σ +

I

2
,

which, by the results of (f), is the state corresponding to rotating ~w by an angle α about the axis ~v.

Exercise 3. Entanglement

a) Prove that the state |0,0〉+|1,1〉√
2

is not equal to |α〉 ⊗ |β〉 for any |α〉 , |β〉 ∈ C2. Here, |0, 0〉 is shorthand

for |0〉 ⊗ |0〉 and similarly for |1, 1〉.

b) Let U(d) denote the set of d × d unitary matrices. The singular value decomposition states that for
any d1 × d2 matrix A there exists a X ∈ U(d1), Y ∈ U(d2) and a d1 × d2 diagonal matrix Λ such that
A = XΛY . The entries of Λ are real, nonnegative, and unique up to reordering.

Use this to prove that for any |ψ〉 ∈ Cd1d2 there exists U ∈ U(d1), V ∈ U(d2) and nonnegative real
numbers λ1, . . . , λd (with d = min(d1, d2)) such that

(U ⊗ V ) |ψ〉 =

d∑
i=1

λi |i〉 ⊗ |i〉 (13)

c) Show that for any |ψ〉 ∈ Cd1d2 there exist nonnegative real numbers λ1, . . . , λd and orthonormal sets
|α1〉 , . . . , |αd〉 ∈ Cd1 and |β1〉 , . . . , |βd〉 ∈ Cd2 such that

|ψ〉 =

d∑
i=1

λi |αi〉 ⊗ |βi〉 (14)

a) This follows from part (c), but here is a direct proof. Let |α〉 = a0 |0〉+ a1 |1〉 and |β〉 = b0 |0〉+ b1 |1〉.
Let |Φ〉 := |00〉+|11〉√

2
. If |Φ〉 = |α〉 ⊗ |β〉, then we must have a0b0 = a1b1 = 1/

√
2 and a0b1 = a1b0 = 0.

Thus, either a0 = 0 or b1 = 0. This contradicts either the claim that a0b0 6= 0 or the claim that
a1b1 6= 0.



b) We can always expand |ψ〉 as

|ψ〉 =

d1∑
i=1

d2∑
j=1

Ai,j |i〉 ⊗ |j〉 ,

for some coefficients {Ai,j}. Let A denote the matrix
∑
i,j Ai,j |i〉 〈j|. If we apply U ⊗ V to |ψ〉 then

the resulting state is

(U ⊗ V ) |ψ〉 =

d1∑
i=1

d2∑
j=1

Ai,jU |i〉 ⊗ V |j〉 (15)

=

d1∑
i,k=1

d2∑
j,l=1

Ai,jUk,iVl,j |k〉 ⊗ |l〉 (16)

=

d1∑
k=1

d2∑
l=1

(UAV T )k,l |k〉 ⊗ |l〉 (17)

Now use the SVD (singular value decomposition) theorem to find X,Λ, Y such that A = XΛY , with
Λ ≥ 0 diagonal, X ∈ U(d1), Y ∈ U(d2). Set U = X† and V = Ȳ (defined to be the complex conjugate
of Y , so that V T = Y †. Then UAV T = Λ and (U⊗V ) |ψ〉 is of the desired form. This decomposition is
known as the Schmidt decomposition. One feature that it inherits from the singular value decomposition
is that the λi are unique up to reordering and the unitaries U, V are also unique if the λi are distinct. If
some of the λi are the same, then the only freedom of U, V corresponds to rotations on those subspaces.

c) Using U, V from part (b), define |αi〉 := U† |i〉 and |βi〉 := V † |i〉.


