Quantum Computing and Information - Problem Set 1 Solutions Due Wed, Jan 19, 2011

Exercise 1. Polarization rotation A polarizer (or polarizing filter) is understood classically to permit one polarization of light (say, horizontal polarization) to pass through, while blocking orthogonally polarized light. For single photons, a polarizer performs a measurement, and either absorbs or transmits the photon depending on the outcome. More concretely, define

$$
\left|P_{\theta}\right\rangle=\cos (\theta)|0\rangle+\sin (\theta)|1\rangle .
$$

One can check that $\left\{\left|P_{\theta}\right\rangle,\left|P_{\theta+\pi / 2}\right\rangle\right\}$ forms an orthonormal basis for \mathbb{C}^{2}. A linear polarizer at angle θ acts on a photon by measuring in the $\left\{\left|P_{\theta}\right\rangle,\left|P_{\theta+\pi / 2}\right\rangle\right\}$ basis and either transmitting the photon (upon outcome $\left|P_{\theta}\right\rangle$) or absorbing it (upon outcome $\left|P_{\theta+\pi / 2}\right\rangle$).
a) Suppose a photon is prepared in state $\left|P_{\theta_{1}}\right\rangle$ and is sent through a polarizer at angle θ_{2}. What is the probability that it is transmitted (i.e. not absorbed)?
b) Now suppose we insert a polarizer at angle θ_{3} between the photon source and the polarizer at angle θ_{2}. Thus, the photon will first encounter the polarizer at angle θ_{3} and then, if it is not absorbed, it will attempt to pass through the polarizer at angle θ_{2}. What is the probabilitity that it is successfully transmitted by both polarizers? Are there any choices of $\theta_{1}, \theta_{2}, \theta_{3}$ such that this is ever larger than the probability in part (a)?
c) Consider a photon initially in state $|0\rangle$ that passes through N polarizers. The $j^{\text {th }}$ polarizer will be at angle $\frac{\pi}{2} \frac{j}{N}$. Show that the probability of being transmitted through all the polarizers is $\geq 1-c / N$ for some constant c.
a) The probability of being transmitted is $\left|\left\langle P_{\theta_{1}} \mid P_{\theta_{2}}\right\rangle\right|^{2}=\left(\cos \left(\theta_{1}\right) \cos \left(\theta_{2}\right)-\sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right)\right)^{2}=\cos ^{2}\left(\theta_{2}-\right.$ θ_{1}).
b) The photon is transmitted through the first polarizer with probability $\cos ^{2}\left(\theta_{3}-\theta_{1}\right)$. Assuming it is not absorbed, it emerges with the state $\left|P_{\theta_{3}}\right\rangle$. In this case, it is transmitted through the second polarizer with probability $\cos ^{2}\left(\theta_{3}-\theta_{2}\right)$, so the total probability is

$$
\cos ^{2}\left(\theta_{1}-\theta_{3}\right) \cos ^{2}\left(\theta_{3}-\theta_{2}\right)
$$

If $\theta_{1}=0, \theta_{2}=\pi / 2, \theta_{3}=\pi / 4$, then the probability in part (a) is 0 and the probability in part (b) is $1 / 4$.
c) This probability is $\cos ^{2 N}\left(\frac{\pi}{2 N}\right)$. Since $\cos (x) \geq 1-\frac{x^{2}}{2}$, we have

$$
\cos ^{2 N}\left(\frac{\pi}{2 N}\right) \geq\left(1-\frac{\pi^{2}}{8 N^{2}}\right)^{2 N} \geq 1-\frac{\pi^{2}}{4 N}
$$

The second inequality here is known as the union bound and can be stated as $\prod_{i=1}^{N}\left(1-x_{i}\right) \geq 1-\sum_{i=1}^{N} x_{i}$. It holds whenever $0 \leq x_{i} \leq 1$ and can be proved by induction on N.

Exercise 2. Qubit states and operators

The purpose of this exercise is to connect single-qubit states and unitaries to physical rotations of spin-1/2 particles.
The Pauli operators $\sigma_{0}, \sigma_{1}, \sigma_{2}, \sigma_{3}$ on \mathbb{C}^{2} are defined by

$$
\sigma_{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) \quad \sigma_{1}=\sigma_{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{2}=\sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{3}=\sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

a) Up to an overall phase, any state $|\psi\rangle \in \mathbb{C}^{2}$ can be written as

$$
\begin{equation*}
|\psi\rangle=\cos \left(\frac{\theta}{2}\right) e^{-i \frac{\phi}{2}}|0\rangle+\sin \left(\frac{\theta}{2}\right) e^{i \frac{\phi}{2}}|1\rangle . \tag{1}
\end{equation*}
$$

Calculate $\langle\psi| \sigma_{x}|\psi\rangle,\langle\psi| \sigma_{y}|\psi\rangle$ and $\langle\psi| \sigma_{z}|\psi\rangle$.
b) Show that $\sigma_{i}^{2}=I$ for $i=0,1,2,3$.
c) For $j, k, l \in\{1,2,3\}$, define the antisymmetric tensor $\epsilon_{j k l}$ by $\epsilon_{123}=\epsilon_{231}=\epsilon_{312}=1, \epsilon_{213}=\epsilon_{321}=$ $\epsilon_{132}=-1$, and $\epsilon_{j k l}=0$ whenever two of j, k, l are equal (i.e. all other cases). Prove that for $j, k \in\{1,2,3\}$

$$
\begin{equation*}
\sigma_{j} \sigma_{k}=\delta_{j k} \sigma_{0}+i \sum_{l=1}^{3} \epsilon_{j k l} \sigma_{l} \tag{2}
\end{equation*}
$$

For example $\sigma_{1} \sigma_{2}=i \sigma_{3}, \sigma_{2} \sigma_{3}=i \sigma_{2}, \sigma_{2} \sigma_{1}=-i \sigma_{3}, \ldots$ Hint: Use (b) to reduce the number of calculations. The antisymmetric tensor also appears in cross products: if $\vec{v}, \vec{w} \in \mathbb{R}^{3}$ then $(\vec{v} \times \vec{w})_{i}=$ $\sum_{j, k} \epsilon_{i j k} v_{j} w_{k}$.
d) For a vector $\vec{v} \in \mathbb{R}^{3}$ define $\vec{v} \cdot \vec{\sigma}:=v_{1} \sigma_{1}+v_{2} \sigma_{2}+v_{3} \sigma_{3}$. For operators A, B, define $[A, B]:=A B-B A$. Show that

$$
\begin{align*}
(\vec{v} \cdot \vec{\sigma})^{2} & =\|\vec{v}\|^{2} \sigma_{0} \tag{3}\\
{[\vec{v} \cdot \vec{\sigma}, \vec{w} \cdot \vec{\sigma}] } & =2 i(\vec{v} \times \vec{w}) \cdot \vec{\sigma} \tag{4}
\end{align*}
$$

e) Let \vec{v} be a unit vector and α a real number. Prove that

$$
\begin{equation*}
e^{i \alpha \vec{v} \cdot \vec{\sigma}}=\cos (\alpha) \sigma_{0}+i \sin (\alpha) \vec{v} \cdot \vec{\sigma} \tag{5}
\end{equation*}
$$

f) Again let \vec{v} be a unit vector and α a real number. Prove that

$$
\begin{equation*}
e^{i \frac{\alpha}{2} \vec{v} \cdot \vec{\sigma}}(\vec{w} \cdot \vec{\sigma}) e^{-i \frac{\alpha}{2} \vec{v} \cdot \vec{\sigma}}=(\cos (\alpha) \vec{w}+\sin (\alpha) \vec{w} \times \vec{v}+(1-\cos (\alpha))(\vec{w} \cdot \vec{v}) \vec{v}) \cdot \vec{\sigma} \tag{6}
\end{equation*}
$$

This is the formula for rotating the vector \vec{w} an angle α about the axis \vec{v}.
g) Let $w_{1}=\sin (\theta) \cos (\phi)$, $w_{2}=\sin (\theta) \sin (\phi), w_{3}=\cos (\theta)$ and define $|\psi\rangle$ as in Eq. (1). Show that $\vec{w} \cdot \vec{\sigma}=2|\psi\rangle\langle\psi|-I$. Use this fact and Eq. (6) to interpret

$$
e^{i \frac{\alpha}{2} \vec{v} \cdot \vec{\sigma}}|\psi\rangle
$$

as a 3-dimensional rotation.
a) First note that $\cos \left(\frac{\theta}{2}\right) e^{-i \frac{\phi}{2}}\langle 0|+\sin \left(\frac{\theta}{2}\right) e^{i \frac{\phi}{2}}\langle 1|$. Then

$$
\begin{aligned}
\langle\psi| \sigma_{x}|\psi\rangle & =\left(\cos \left(\frac{\theta}{2}\right) e^{-i \frac{\phi}{2}}\langle 0|+\sin \left(\frac{\theta}{2}\right) e^{i \frac{\phi}{2}}\langle 1|\right) \sigma_{x}\left(\cos \left(\frac{\theta}{2}\right) e^{i \frac{\phi}{2}}|0\rangle+\sin \left(\frac{\theta}{2}\right) e^{-i \frac{\phi}{2}}|1\rangle\right) \\
& =\left(\cos \left(\frac{\theta}{2}\right) e^{-i \frac{\phi}{2}}\langle 0|+\sin \left(\frac{\theta}{2}\right) e^{i \frac{\phi}{2}}\langle 1|\right)\left(\cos \left(\frac{\theta}{2}\right) e^{i \frac{\phi}{2}}|1\rangle+\sin \left(\frac{\theta}{2}\right) e^{-i \frac{\phi}{2}}|0\rangle\right) \\
& =\cos (\theta / 2) \sin (\theta / 2) e^{-i \phi}+\sin (\theta / 2) \cos (\theta / 2) e^{i \phi} \\
& =\cos (\theta / 2) \sin (\theta / 2) 2 \cos (\phi) \\
& =\sin (\theta) \cos (\phi) .
\end{aligned}
$$

Next

$$
\begin{aligned}
\langle\psi| \sigma_{y}|\psi\rangle & =\left(\cos \left(\frac{\theta}{2}\right) e^{-i \frac{\phi}{2}}\langle 0|+\sin \left(\frac{\theta}{2}\right) e^{i \frac{\phi}{2}}\langle 1|\right)\left(i \cos \left(\frac{\theta}{2}\right) e^{i \frac{\phi}{2}}|1\rangle-i \sin \left(\frac{\theta}{2}\right) e^{-i \frac{\phi}{2}}|0\rangle\right) \\
& =\sin (\theta / 2) \cos (\theta / 2)\left(i e^{i \phi}-i e^{-i \phi}\right) \\
& =\sin (\theta / 2) \cos (\theta / 2)(-2 \sin (\phi)) \\
& =-\sin (\theta) \sin (\phi)
\end{aligned}
$$

Finally $\langle\psi| \sigma_{z}|\psi\rangle=\cos ^{2}(\theta / 2)-\sin ^{2}(\theta / 2)=\cos (\theta)$.
Together, these correspond to the (x, y, z) coordinates of a point on the sphere with latitude θ and longtude $-\phi$.
b) This involves three direct calculations:

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \cdot\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Alternatively, you can use the fact that $\sigma_{1} \sigma_{2} \sigma_{3}=i \sigma_{0}$, that $\sigma_{i}^{2}=1$ and that each $\sigma_{i}=\sigma_{i}^{\dagger}$ to construct all of the desired relations.
c) Given the result from (b), we still need to show

$$
\begin{align*}
\sigma_{1} \sigma_{2} & =i \sigma_{3} \tag{7a}\\
\sigma_{2} \sigma_{3} & =i \sigma_{1} \tag{7b}\\
\sigma_{3} \sigma_{1} & =i \sigma_{2} \tag{7c}\\
\sigma_{2} \sigma_{1} & =-i \sigma_{3} \tag{7d}\\
\sigma_{3} \sigma_{2} & =-i \sigma_{1} \tag{7e}\\
\sigma_{1} \sigma_{3} & =-i \sigma_{2} \tag{7f}
\end{align*}
$$

One possibility is to do six matrix multiplications. Here is a slightly easier method. Start by proving Eq. (7a) with a direct calculation

$$
\sigma_{1} \sigma_{2}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \cdot\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right)=i \sigma_{3} .
$$

Now we can leverage this using (b). Multiply both sides by σ_{1} on the left and obtain $\sigma_{1}^{2} \sigma_{2}=i \sigma_{1} \sigma_{3}$. Replacing $\sigma_{1}^{2} \sigma_{2}=\sigma_{2}$ and multiplying both sides by $-i$ proves Eq. (7f). Now right-multiply Eq. (7f) by σ_{3} to obtain $\sigma_{1}=\sigma_{1} \sigma_{3}^{2}=-i \sigma_{2} \sigma_{3}$. Multiplying by i proves Eq. (7b). Next, left-multiply Eq. (7b) by σ_{2} to find $\sigma_{3}=i \sigma_{2} \sigma_{1}$, implying Eq. (7d). Right-multiply Eq. (7d) by σ_{1} to find $\sigma_{3} \sigma_{1}=i \sigma_{2}$, proving Eq. (7c). Left-multiply Eq. (7c) by σ_{3} to obtain $\sigma_{1}=i \sigma_{3} \sigma_{2}$, implying Eq. (7e). This completes the proof.
d)

$$
(\vec{v} \cdot \vec{\sigma})^{2}=\sum_{i=1}^{3} v_{i} \sigma_{i} \sum_{j=1}^{3} v_{j} \sigma_{j}=\sum_{i=1}^{3} \sum_{j=1}^{3} v_{i} v_{j} \sigma_{i} \sigma_{j}=\sum_{i=1}^{3} \sum_{j=1}^{3} v_{i} v_{j}\left(\delta_{i, j} \sigma_{0}+\sum_{k=1}^{3} i \epsilon_{i j k} \sigma_{k}\right)=\sum_{i=1}^{3} v_{i}^{2} \sigma_{0}+i \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \epsilon_{i j k} \sigma_{k} .
$$

We claim this second term is zero. This is because

$$
\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \epsilon_{i j k} \sigma_{k}=\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3}-\epsilon_{j i k} \sigma_{k}=-\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \epsilon_{i j k} \sigma_{k} .
$$

Thus $(\vec{v} \cdot \vec{\sigma})^{2}=\sum_{i=1}^{3} v_{i}^{2} \sigma_{0}=\|\vec{v}\|^{2} \sigma_{0}$.

Next

$$
\begin{aligned}
{[\vec{v} \cdot \vec{\sigma}, \vec{w} \cdot \vec{\sigma}] } & =\sum_{i=1}^{3} \sum_{j=1}^{3} v_{i} w_{j}\left(\sigma_{i} \sigma_{j}-\sigma_{j} \sigma_{i}\right) \\
& =\sum_{i=1}^{3} \sum_{j=1}^{3} v_{i} w_{j}\left(\left(\delta_{i j}-\delta_{j i}\right) \sigma_{0}+i \sum_{k=1}^{3}\left(\epsilon_{i j k}-\epsilon_{j i k}\right) \sigma_{k}\right) \\
& =2 i \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} v_{i} w_{j} \epsilon_{i j k} \sigma_{k} \\
& =2 i \sum_{k=1}^{3}(\vec{v} \times \vec{w})_{k} \sigma_{k} \\
& =2 i(\vec{v} \times \vec{w}) \cdot \vec{\sigma}
\end{aligned}
$$

e) Since $(\vec{v} \cdot \vec{\sigma})^{2}=\|\vec{v}\|^{2} \sigma_{0}=\sigma_{0}$, then for any nonnegative integer k, we have $(\vec{v} \cdot \vec{\sigma})^{2 k}=\sigma_{0}$ and $(\vec{v} \cdot \vec{\sigma})^{2 k+1}=$ $\vec{v} \cdot \vec{\sigma}$. Thus

$$
e^{i \alpha \vec{v} \cdot \vec{\sigma}}=\sum_{n \geq 0} \frac{(i \alpha \vec{v} \cdot \vec{\sigma})^{n}}{n!}=\sum_{k \geq 0} \frac{(-1)^{k} \alpha^{2 k}}{(2 k)!} \sigma_{0}+i \sum_{k \geq 0} \frac{(-1)^{k} \alpha^{2 k+1}}{(2 k+1)!} \vec{v} \cdot \vec{\sigma}=\cos (\alpha) \sigma_{0}+i \sin (\alpha) \vec{v} \cdot \vec{\sigma}
$$

where we have used the Taylor expansions of $e^{x}=\sum_{n \geq 0} x^{n} / n!, \cos (x)=\sum_{n \geq 0}(-1)^{n} x^{2 n} /(2 n)$! and $\sin (x)=\sum_{n \geq 0}(-1)^{n} x^{2 n+1} /(2 n+1)!$.
f) First expand out the exponentials using Eq. (5).

$$
\begin{align*}
e^{i \frac{\alpha}{2} \vec{v} \cdot \vec{\sigma}}(\vec{w} \cdot \vec{\sigma}) e^{-i \frac{\alpha}{2} \vec{v} \cdot \vec{\sigma}}= & \left(\cos \left(\frac{\alpha}{2}\right) \sigma_{0}+i \sin \left(\frac{\alpha}{2}\right) \vec{v} \cdot \vec{\sigma}\right)(\vec{w} \cdot \vec{\sigma})\left(\cos \left(\frac{\alpha}{2}\right) \sigma_{0}-i \sin \left(\frac{\alpha}{2}\right) \vec{v} \cdot \vec{\sigma}\right) \tag{8}\\
= & \cos ^{2}\left(\frac{\alpha}{2}\right) \vec{w} \cdot \vec{\sigma} \tag{9}\\
& +i \sin \left(\frac{\alpha}{2}\right) \cos \left(\frac{\alpha}{2}\right)((\vec{v} \cdot \vec{\sigma})(\vec{w} \cdot \vec{\sigma})-(\vec{w} \cdot \vec{\sigma})(\vec{v} \cdot \vec{\sigma})) \tag{10}\\
& -\sin ^{2}\left(\frac{\alpha}{2}\right)(\vec{v} \cdot \vec{\sigma})(\vec{w} \cdot \vec{\sigma})(\vec{v} \cdot \vec{\sigma}) \tag{11}
\end{align*}
$$

To analyse Eq. (10), we note that the term in brackets is $[(\vec{v} \cdot \vec{\sigma}),(\vec{w} \cdot \vec{\sigma})]$ and use Eq. (4). For Eq. (11), we use the fact that

$$
\begin{equation*}
(\vec{a} \cdot \vec{\sigma})(\vec{b} \cdot \vec{\sigma})=[\vec{a} \cdot \vec{\sigma}, \vec{b} \cdot \vec{\sigma}]+(\vec{b} \cdot \vec{\sigma})(\vec{a} \cdot \vec{\sigma}) \tag{12}
\end{equation*}
$$

to simplify

$$
\begin{align*}
(\vec{v} \cdot \vec{\sigma})(\vec{w} \cdot \vec{\sigma})(\vec{v} \cdot \vec{\sigma}) & =([(\vec{v} \cdot \vec{\sigma}),(\vec{w} \cdot \vec{\sigma})]+(\vec{w} \cdot \vec{\sigma})(\vec{v} \cdot \vec{\sigma}))(\vec{v} \cdot \vec{\sigma}) \tag{12}\\
& =[(\vec{v} \cdot \vec{\sigma}),(\vec{w} \cdot \vec{\sigma})](\vec{v} \cdot \vec{\sigma})+(\vec{w} \cdot \vec{\sigma})(\vec{v} \cdot \vec{\sigma})(\vec{v} \cdot \vec{\sigma}) \\
& =[(\vec{v} \cdot \vec{\sigma}),(\vec{w} \cdot \vec{\sigma})](\vec{v} \cdot \vec{\sigma})+(\vec{w} \cdot \vec{\sigma}) \tag{3}\\
& =[[(\vec{v} \cdot \vec{\sigma}),(\vec{w} \cdot \vec{\sigma})],(\vec{v} \cdot \vec{\sigma})]+(\vec{v} \cdot \vec{\sigma})[(\vec{v} \cdot \vec{\sigma}),(\vec{w} \cdot \vec{\sigma})]+(\vec{w} \cdot \vec{\sigma}) \tag{12}\\
& =[[(\vec{v} \cdot \vec{\sigma}),(\vec{w} \cdot \vec{\sigma})],(\vec{v} \cdot \vec{\sigma})]+(\vec{v} \cdot \vec{\sigma})(\vec{v} \cdot \vec{\sigma})(\vec{w} \cdot \vec{\sigma})-(\vec{v} \cdot \vec{\sigma})(\vec{w} \cdot \vec{\sigma})(\vec{v} \cdot \vec{\sigma})+(\vec{w} \cdot \vec{\sigma}) \\
& =[[(\vec{v} \cdot \vec{\sigma}),(\vec{w} \cdot \vec{\sigma})],(\vec{v} \cdot \vec{\sigma})]-(\vec{v} \cdot \vec{\sigma})(\vec{w} \cdot \vec{\sigma})(\vec{v} \cdot \vec{\sigma})+2(\vec{w} \cdot \vec{\sigma})
\end{align*}
$$

using Eq. (3)
Rearranging, we find that

$$
\begin{aligned}
(\vec{v} \cdot \vec{\sigma})(\vec{w} \cdot \vec{\sigma})(\vec{v} \cdot \vec{\sigma}) & =\frac{1}{2}[[(\vec{v} \cdot \vec{\sigma}),(\vec{w} \cdot \vec{\sigma})],(\vec{v} \cdot \vec{\sigma})]+\vec{w} \cdot \vec{\sigma} \\
& =i[(\vec{v} \times \vec{w}) \cdot \vec{\sigma}, \vec{v} \cdot \vec{\sigma}]+\vec{w} \cdot \vec{\sigma} \\
& =-2((\vec{v} \times \vec{w}) \times \vec{v}) \cdot \vec{\sigma}+\vec{w} \cdot \vec{\sigma} \\
& =-2(\vec{w}-(\vec{w} \cdot \vec{v}) \vec{v}) \cdot \vec{\sigma}+\vec{w} \cdot \vec{\sigma} \\
& =2(\vec{w} \cdot \vec{v}) \vec{v} \cdot \vec{\sigma}-\vec{w} \cdot \vec{\sigma}
\end{aligned}
$$

Putting this together, we find that

$$
e^{i \frac{\alpha}{2} \vec{v} \cdot \vec{\sigma}}(\vec{w} \cdot \vec{\sigma}) e^{-i \frac{\alpha}{2} \vec{v} \cdot \vec{\sigma}}=(\cos (\alpha) \vec{w}+\sin (\alpha) \vec{w} \times \vec{v}+(1-\cos (\alpha))(\vec{w} \cdot \vec{v}) \vec{v}) \cdot \vec{\sigma}
$$

This is the formula for rotating the vector \vec{w} an angle α about the axis \vec{v}.
g)

$$
\begin{aligned}
|\psi\rangle\langle\psi| & =\cos ^{2}\left(\frac{\theta}{2}\right)|0\rangle\langle 0|+\sin ^{2}\left(\frac{\theta}{2}\right)|1\rangle\langle 1|+\cos \left(\frac{\theta}{2}\right) \sin \left(\frac{\theta}{2}\right)\left(e^{-i \phi}|1\rangle\langle 0|+e^{-i \phi}|0\rangle\langle 1|\right) \\
& =\frac{I}{2}+\frac{\cos (\theta)}{2} \sigma_{3}+\cos \left(\frac{\theta}{2}\right) \sin \left(\frac{\theta}{2}\right)\left(e^{-i \phi}|1\rangle\langle 0|+e^{-i \phi}|0\rangle\langle 1|\right) \\
& =\frac{I}{2}+\frac{\cos (\theta)}{2} \sigma_{3}+\cos \left(\frac{\theta}{2}\right) \sin \left(\frac{\theta}{2}\right)(\cos (\phi)(|1\rangle\langle 0|+|0\rangle\langle 1|)+i \sin (\phi)(|1\rangle\langle 0|-|0\rangle\langle 1|)) \\
& =\frac{I}{2}+\frac{\cos (\theta)}{2} \sigma_{3}+\frac{\sin (\theta)}{2}\left(\cos (\phi) \sigma_{1}+\sin (\phi) \sigma_{2}\right) \\
& =\frac{I+\vec{w} \cdot \vec{\sigma}}{2}
\end{aligned}
$$

Rearranging yields $\vec{w} \cdot \vec{\sigma}=2|\psi\rangle\langle\psi|-I$.
Next, let $|\varphi\rangle=e^{i \frac{\alpha}{2} \vec{v} \cdot \vec{\sigma}}|\psi\rangle$. Then

$$
|\varphi\rangle\langle\varphi|=e^{i \frac{\alpha}{2} \vec{v} \cdot \vec{\sigma}}|\psi\rangle\langle\psi| e^{-i \frac{\alpha}{2} \vec{v} \cdot \vec{\sigma}}=e^{i \frac{\alpha}{2} \vec{v} \cdot \vec{\sigma}} \frac{\vec{w} \cdot \vec{\sigma}}{2} e^{-i \frac{\alpha}{2} \vec{v} \cdot \vec{\sigma}}+\frac{I}{2},
$$

which, by the results of (f), is the state corresponding to rotating \vec{w} by an angle α about the axis \vec{v}.

Exercise 3. Entanglement

a) Prove that the state $\frac{|0,0\rangle+|1,1\rangle}{\sqrt{2}}$ is not equal to $|\alpha\rangle \otimes|\beta\rangle$ for any $|\alpha\rangle,|\beta\rangle \in \mathbb{C}^{2}$. Here, $|0,0\rangle$ is shorthand for $|0\rangle \otimes|0\rangle$ and similarly for $|1,1\rangle$.
b) Let $\mathcal{U}(d)$ denote the set of $d \times d$ unitary matrices. The singular value decomposition states that for any $d_{1} \times d_{2}$ matrix A there exists a $X \in \mathcal{U}\left(d_{1}\right), Y \in \mathcal{U}\left(d_{2}\right)$ and a $d_{1} \times d_{2}$ diagonal matrix Λ such that $A=X \Lambda Y$. The entries of Λ are real, nonnegative, and unique up to reordering.
Use this to prove that for any $|\psi\rangle \in \mathbb{C}^{d_{1} d_{2}}$ there exists $U \in \mathcal{U}\left(d_{1}\right), V \in \mathcal{U}\left(d_{2}\right)$ and nonnegative real numbers $\lambda_{1}, \ldots, \lambda_{d}$ (with $d=\min \left(d_{1}, d_{2}\right)$) such that

$$
\begin{equation*}
(U \otimes V)|\psi\rangle=\sum_{i=1}^{d} \lambda_{i}|i\rangle \otimes|i\rangle \tag{13}
\end{equation*}
$$

c) Show that for any $|\psi\rangle \in \mathbb{C}^{d_{1} d_{2}}$ there exist nonnegative real numbers $\lambda_{1}, \ldots, \lambda_{d}$ and orthonormal sets $\left|\alpha_{1}\right\rangle, \ldots,\left|\alpha_{d}\right\rangle \in \mathbb{C}^{d_{1}}$ and $\left|\beta_{1}\right\rangle, \ldots,\left|\beta_{d}\right\rangle \in \mathbb{C}^{d_{2}}$ such that

$$
\begin{equation*}
|\psi\rangle=\sum_{i=1}^{d} \lambda_{i}\left|\alpha_{i}\right\rangle \otimes\left|\beta_{i}\right\rangle \tag{14}
\end{equation*}
$$

a) This follows from part (c), but here is a direct proof. Let $|\alpha\rangle=a_{0}|0\rangle+a_{1}|1\rangle$ and $|\beta\rangle=b_{0}|0\rangle+b_{1}|1\rangle$. Let $|\Phi\rangle:=\frac{|00\rangle+|11\rangle}{\sqrt{2}}$. If $|\Phi\rangle=|\alpha\rangle \otimes|\beta\rangle$, then we must have $a_{0} b_{0}=a_{1} b_{1}=1 / \sqrt{2}$ and $a_{0} b_{1}=a_{1} b_{0}=0$. Thus, either $a_{0}=0$ or $b_{1}=0$. This contradicts either the claim that $a_{0} b_{0} \neq 0$ or the claim that $a_{1} b_{1} \neq 0$.
b) We can always expand $|\psi\rangle$ as

$$
|\psi\rangle=\sum_{i=1}^{d_{1}} \sum_{j=1}^{d_{2}} A_{i, j}|i\rangle \otimes|j\rangle,
$$

for some coefficients $\left\{A_{i, j}\right\}$. Let A denote the matrix $\sum_{i, j} A_{i, j}|i\rangle\langle j|$. If we apply $U \otimes V$ to $|\psi\rangle$ then the resulting state is

$$
\begin{align*}
(U \otimes V)|\psi\rangle & =\sum_{i=1}^{d_{1}} \sum_{j=1}^{d_{2}} A_{i, j} U|i\rangle \otimes V|j\rangle \tag{15}\\
& =\sum_{i, k=1}^{d_{1}} \sum_{j, l=1}^{d_{2}} A_{i, j} U_{k, i} V_{l, j}|k\rangle \otimes|l\rangle \tag{16}\\
& =\sum_{k=1}^{d_{1}} \sum_{l=1}^{d_{2}}\left(U A V^{T}\right)_{k, l}|k\rangle \otimes|l\rangle \tag{17}
\end{align*}
$$

Now use the SVD (singular value decomposition) theorem to find X, Λ, Y such that $A=X \Lambda Y$, with $\Lambda \geq 0$ diagonal, $X \in \mathcal{U}\left(d_{1}\right), Y \in \mathcal{U}\left(d_{2}\right)$. Set $U=X^{\dagger}$ and $V=\bar{Y}$ (defined to be the complex conjugate of Y, so that $V^{T}=Y^{\dagger}$. Then $U A V^{T}=\Lambda$ and $(U \otimes V)|\psi\rangle$ is of the desired form. This decomposition is known as the Schmidt decomposition. One feature that it inherits from the singular value decomposition is that the λ_{i} are unique up to reordering and the unitaries U, V are also unique if the λ_{i} are distinct. If some of the λ_{i} are the same, then the only freedom of U, V corresponds to rotations on those subspaces.
c) Using U, V from part (b), define $\left|\alpha_{i}\right\rangle:=U^{\dagger}|i\rangle$ and $\left|\beta_{i}\right\rangle:=V^{\dagger}|i\rangle$.

