
Quantum Computing and Information - Problem Set 2 Solutions

Exercise 1. Constructing a Toffoli gate from CNOT and single-qubit gates This exercise will prove
that two-qubit unitary gates are universal. For a single-qubit unitary U , define the controlled-U operation to
be CU := |0〉〈0| ⊗ I + |1〉〈1| ⊗ U . Note that cnot = CX . To indicate the systems that these gates act on
we use the notation [CX ]i,j to mean a controlled-U operation where qubit i is the control and qubit j is the
target.

a) Show that
[CU ]1,3[CX ]2,1[C†U ]13[CX ]21[CU ]23

implements a doubly-controlled U2: i.e. applies [U2]3 only if qubits 1 and 2 are both in the |1〉 state.
Thus if U = eiϕ

√
X for some ϕ then this implements gate that is related to the Toffoli gate.

b) Now we need to construct a controlled-
√
X gate from CNOTs and single-qubit gates. Show that

[V ]3[CX ]1,3[V †]3[W ]3[CX ]1,3[W †]3 = [CU ]1,3,

where U = V XV †WXW †.

c) Find V,W such that V XV †WXW † = eiϕ
√
X for some ϕ. (Part (d) of question 2 on problem set 1

may help here, although you will need to calculate (~v · ~σ) · (~w · ~σ) rather than the commutator.)

a) Note that [CX ]2,1 =
∑
a,b∈{0,1} |a〉〈a|2 ⊗ |b⊕ a〉 〈b|1. Now we calculate

[CU ]2,3 =
∑

a,b∈{0,1}

|a〉〈a| ⊗ |b〉〈b| ⊗ U b

[CX ]2,1[CU ]2,3 =
∑

a,b∈{0,1}

|b⊕ a〉 〈a| ⊗ |b〉〈b| ⊗ U b

[C†U ]1,3[CX ]2,1[CU ]2,3 =
∑

a,b∈{0,1}

|b⊕ a〉 〈a| ⊗ |b〉〈b| ⊗ U b−(b⊕a)

[CX ]2,1[C†U ]1,3[CX ]2,1[CU ]2,3 =
∑

a,b∈{0,1}

|a〉 〈a| ⊗ |b〉〈b| ⊗ U b−(b⊕a)

[CU ]1,3[CX ]2,1[C†U ]1,3[CX ]2,1[CU ]2,3 =
∑

a,b∈{0,1}

|a〉 〈a| ⊗ |b〉〈b| ⊗ Ua+b−(b⊕a)

Finally, we observe that for a, b ∈ {0, 1}, a+ b− (a⊕ b) = ab.

b) If qubit 1 is in the |0〉 state then we can ignore the [CX ]1,3 gates, and we are left with V V †WW † = I
acting on qubit 3. On the other hand, if qubit 1 is in the |1〉 state, then the [CX ]1,3 gates act as
[X]3 gates, and we obtain V XV †WXW † acting on qubit 3. This is equivalent to the claimed [CU ]1,3
behavior.

c) Note that X = ei
π
2X , so

√
X = ei

π
4X = (I + iX)/

√
2. Define ~v, ~w such that ~v · ~σ = V XV † and

~w ·~σ = WXW †. We claim that varying over all unitary V is equivalent to varying over all unit vectors
~v (and similarly for W, ~w). Why? First, according to the spectral theorem, the set {V XV † : V ∈ U2}
equals the set of Hermitian matrices with eigenvalues {1,−1}. Second, any traceless 2 × 2 Hermitian
matrix can be written in the form ~v · ~σ for some not-necessarily-unit vector ~v. Third, (~v · ~σ)2 = ‖~v‖2I,
implying that (~v ·~σ) has eigenvalues ±‖~v‖. Thus if ~v is a unit vector then ~v ·~σ has eigenvalues ±1 and
therefore can be written as V XV † for V ∈ U2; and conversely, for any V ∈ U2, V XV † has eigenvalues
±1 and therefore equals ~v · ~sigma for some unit vector ~v.

We now return to the problem at hand. From 2d of the last problem set plus a small calculation, we
find that

(~v · ~σ)(~w · ~σ) = (~v · ~w)I + i(~v × ~w) · σ.



Thus we need to choose unit vectors ~v, ~w satisfying ~v · ~w = 1/
√

2 (so the angle between the vectors is
π/4) and ~v · ~w = (1, 0, 0)/

√
2. Thus, the vectors should be in the y-z plane. One choice that works is

~v = (0, 1, 1)/
√

2, ~w = (0, 0, 1).

Finally, we need to find the corresponding V,W whose existence is guaranteed by the spectral theorem.
Using the spectral theorem, we should choose V to map the eigenbasis of X to the eigenbasis of ~v ·~σ, and
similarly should choose W to map the eigenbasis of X to the eigenbasis of ~w ·~σ. This can be done with
matlab, or by using problem 2g of the last problem set to observe that since ~v has polar coordinates θ =
π/4, φ = π/2, we have ~v·~σ = 2|α〉〈α|−I = |α〉〈α|−|β〉〈β| for |α〉 = cos(π/8)e−iπ/4 |0〉+sin(π/8)eiπ/4 |1〉
and |β〉 = sin(π/8)e−iπ/4 |0〉 − cos(π/8)eiπ/4 |1〉. Thus, we can take V = |α〉 〈+|+ |β〉 〈−|. We can do
something similar for W , or just notice that W = H works, for H the Hadamard matrix.

An alternate solution (due to Kamil) for V is to define T = exp(iπ8σz), observe that XTX = T−1 and
that T 4 = Z. Thus, TXT−1 = T 2X and (TH)†X(TH) = HT †XTH = HXT 2H = ZHT 2H. We
take V = H and W = (TH)† = HT † and find V XV †WXW † = (HXH) · (ZHT 2H) = Z · ZHT 2H =
HT 2H = H

√
ZH =

√
X.

Exercise 2. The hybrid argument The operator norm is defined as follows. If M is a matrix, then define

‖M‖ := max | 〈α|M |β〉 |,

where the max is taken over all unit vectors |α〉 and |β〉.

a) Show that the operator norm obeys the triangle inequality: ‖A+B‖ ≤ ‖A‖+ ‖B‖.

b) Show that the norm is right and left unitarily-invariant. That is, for any unitary U and any matrix
M , ‖M‖ = ‖MU‖ = ‖UM‖.

c) Suppose that we would like to perform a quantum circuit U(T ) := U1U2 · · ·UT but only are able to apply
each gate approximately. Thus, we instead perform Ũ(T ) := Ũ1 · · · ŨT for some unitaries Ũ1, . . . , ŨT

satisfying ‖Ui − Ũi‖ ≤ εi for i = 1, . . . , T . Prove that ‖U(T ) − Ũ(T )‖ ≤ ε(T ) :=
∑T
i=1 εi.

a) Let unit vectors 〈α| and |β〉 satisfy 〈α|M |β〉 = M . Then ‖A‖ ≥ | 〈α|A |β〉 | and ‖B‖ ≥ | 〈α|B |β〉 | by
the definitions of the operator norm, and thus

‖A‖+ ‖B‖ ≥ | 〈α|A |β〉 |+ | 〈α|B |β〉 |
≥ 〈α| (A+B) |β〉 = ‖A+B‖ by the triangle inequality for C

b) Since U is a bijection on the set of unit vectors, maximizing over |β〉 is the same as maximizing over
U |β〉. Similarly, maximizing over 〈α| is the same as maximizing over 〈α|U .

c) We prove the claim by induction on T . The base case (T = 1) is immediate. Now assume that
‖U(T−1) − Ũ(T−1)‖ ≤ ε1 + . . .+ εT−1. Use first the right invariance of the operator norm and then the
triangle inequality to obtain

‖U(T ) − Ũ(T )‖ = ‖U(T−1)UT − U(T−1)ŨT + U(T−1)ŨT − Ũ(T−1)ŨT ‖ (1)

≤ ‖U(T−1)UT − U(T−1)ŨT ‖+ ‖U(T−1)ŨT − Ũ(T−1)ŨT ‖ (2)

≤ ‖UT − ŨT ‖+ ‖U(T−1) − Ũ(T−1)‖ (3)

εT +
T−1∑
i=1

εi (4)

In Eq. (3), we have used the right and left unitary invariance of the operator norm, and in the final
equation we used the induction hypothesis.

Exercise 3. A lazier Quantum Fourier Transform (QFT)
When implementing the QFT, a lot of time is spent on Rk = exp( 2πi|1〉〈1|

2k
) rotations that, for large values of

k, are very close to I. Suppose we replace Rk with the identity whenever k ≥ k0 for some cut-off value k0.



a) The standard QFT uses O(n2) gates. Give an asymptotic estimate for the number of gates in the lazy
QFT described here, noting that identity gates don’t count.

b) Give an upper bound on the error in the resulting approximate QFT.

c) How many gates suffice to achieve an error that scales as 1/n100?

a) Each qubit is now involved in ≤ k0 controlled rotations, so the total number of gates is O(nk0). In
fact, this is not much of an overestimate, since only k0 qubits are involved in fewer than k0 gates.

b) ‖Rk − I‖ = |e2πi/2k − 1| = sin(π/2k) ≤ π/2k using the fact that sin(x) ≤ |x| for all x. The total error
is ≤

∑n−k0
j=0 π(n− k0 − j)2−k0−j ≤ πn2−k0

∑∞
j=0 2−j = 2πn2−k0 = O(n2−k0).

c) 101 log(n).

Exercise 4. Phase estimation

a) Suppose we start with the state

1√
2n

2n−1∑
x=0

|x〉 , (5)

apply the conditional phase
∑2n−1
x=0 e2πiϕx|x〉〈x| and then the inverse QFT 1√

2n

∑N−1
x,y=0 e

− 2πixy
N |x〉 〈y|.

Finally we measure the state in the computational basis and obtain outcome y. Calculate Pr [y].

b) Assume that 0 ≤ ϕ ≤ 1. Define ∆ := y/N − ϕ and δ = min(|∆|, 1− |∆|). This definition is meant to
express the idea that δ is the error in the phase estimation procedure. Show that there exists a constant
c > 0 such that

Pr
[
δ ≥ k

N

]
≤ c

k
,

for any positive integer k. Hint: For α ≥ 0, it may be helpful to use the bounds α−α3/6 ≤ sinα ≤ α .

c) Optional: Now suppose we do the same procedure but replace the state in Eq. (5) with

1√
2n−1

2n−1∑
x=0

sin
π(x+ 1

2 )
2n

|x〉 . (6)

Check that this state is normalized, calculate Pr [y] for this strategy, and show that it satisfies

Pr
[
δ ≥ k

N

]
≤ c

k3
,

for any positive integer k and for a possibly different constant c. Thus, while the width of this distri-
bution cannot be substantially improved, the tails can be made to drop off faster. This question relates
to the construction of optimal quantum clocks.

a) Use the expression for a finite geometric series, valid for all x 6= 1:
∑N−1
j=0 xj = (1−xN )/(1−x). Then

we obtain:

Pr [y] =

∣∣∣∣∣ 1
N

N−1∑
x=0

e2πix∆/N

∣∣∣∣∣
2

=
∣∣∣∣ 1− e2πi∆

N(1− e2πi∆/N )

∣∣∣∣2 =
sin2(π∆)

N2 sin2(π∆/N)
=

sin2(πδ)
N2 sin2(πδ/N)

b) Suppose |δ| ≤ N/π. Then

sin2(πδ/N) ≥

(
πδ

N

(
1− 1

6

(
πδ

N

)2
))2

≥
(

5π
6
δ

N

)2

≥ δ2/N2.



Using sin2(πδ) ≤ 1, we find that Pr [y] ≤ 1/δ2.

On the other hand, if |Nδ| > 1/π, then we also have |Nδ| < 1/2 by the definition of δ. Thus
sin2(πδ/N) ≥ sin2(1) ≥ 0.7. We conclude that Pr [y] ≥ 2/δ2. Finally, we can sum over |δ| ≥ k to
obtain Pr [|δ| ≥ k] ≤ 4/δ.

c) This calculation is in appendix A.3 of arXiv:0811.3171. The proof there has (at least) one mistake:
the δ2 at the end should be δ4.

Exercise 5. Collision detection
Suppose we are given a black-box function f : {0, 1}n → {0, 1}n−1 that is 2-to-1: i.e. exactly two inputs go to
each output. Our goal is to find x, y ∈ {0, 1}n such that f(x) = f(y). However, unlike in Simon’s algorithm,
we now have no promise about any periodicity of f . As a result it turns out that quantum computers cannot
achieve exponential speedups in this case. Define N = 2n.

a) Give a classical algorithm that finds a collision with high probability (≥ 1/2) using only O(
√
N) queries

to f .

b) Suppose now that only O(N1/3 log(N)) bits of memory are available. (Note that log(N) bits can store
one integer between 1 and N .) Now describe a classical algorithm that finds a collision with high
probability that uses O(N2/3) queries.

c) Give a quantum algorithm that finds a collision in O(
√
N) queries and uses O(log(N)) space. Hint:

Use Grover’s algorithm.

d) Give a quantum algorithm that finds a collision in O(M +
√
N/M) queries and uses O(M log(N))

space for any choice of M . Choosing M = N1/3 will then yield a Õ(N1/3)-query algorithm, where Õ
neglects log factors. Hint: combine parts (b) and (c).

a) Query a random subset S ⊂ {0, 1}n of size c
√
N + 1 and check for collisions. Suppose that after

k queries, we haven’t yet seen a collision. Then the probability of seeing a collision on the k + 1st

query is k/(N − k) ≥ k/N . Thus, the probability of failing to see a collision on the k + 1st query is
≤ 1− k/N ≤ e−k/N . The probability that no collision is found after c

√
N + 1 queries is ≤

∏c
√
N

i=1 (1−
i/N) ≤ exp(−

∑c
√
N

i=1 i/N) ≤ e−c2 . Taking c =
√

ln(2) then suffices.

An alternate approach is to observe that there are N(N − 1) · · · (N − t+ 1) subsets of [N ] of size t, but
only N(N−2) · · · (N−2(t+1)) of these are collision-free. We then bound (1−2j/N)/(1−j/N) ≤ e−j/N
by comparing the powers of j/N on each side, and then the proof proceeds as above.

b) Choose a random subset S of size N1/3 and query f on those positions. Storing the answer takes
N1/3 log(N) bits of memory. If there is already a collision, then we are done. If not, then query cN2/3

random positions in {0, 1}n−S and check for collisions with S. If the function is 2-1, then each query
has a 1−N−2/3 chance of finding a collision. Thus, a collision is found with probability 1−e−c. Taking
c = ln(2), we find a collision with probability ≥ 1/2.

c) Query f(0), store the answer, and then Grover search for i 6= 0 s.t. f(i) = f(0).

d) Choose a random subset S of size M and query f on those positions. This takes M queries. Grover
search for i ∈ {0, 1}n − S s.t. f(i) ∈ f(S). Assuming that f is 1-1 on S (and again, if this is not true,
then we are done), there are M targets in a search space of size N −M . Thus, Grover search takes

O(
√

N−M
M ) ≤ O(

√
N/M) queries. The total number of queries is O(M +

√
N/M).

Exercise 6. Optional, but recommended: Quantum counting
We are given a black-box function f : {0, 1}n → {0, 1} and would like to estimate |f−1(1)|: that is, the
number of x ∈ {0, 1}n such that f(x) = 1. Let M = |f−1(1)| and N = 2n.



a) Suppose we are given access to Uf =
∑
x∈{0,1}n

∑
y∈{0,1} |x〉〈x| ⊗ |y ⊕ f(x)〉 〈y| . We would like to use

Uf to apply the phase (−1)f(x) conditioned on an additional qubit. This operation is defined as

Vf = I ⊗ |0〉〈0|+
∑

x∈{0,1}n
(−1)f(x)|x〉〈x| ⊗ |1〉〈1|.

Show how we can use Uf to implement Vf .

b) Define |s〉 = 1√
2n

∑N−1
x=0 |x〉. Define the Grover iteration

G = (I − 2|s〉〈s|) ·
∑

x∈{0,1}n
(−1)f(x)|x〉〈x|.

Find the eigenvalues of G.

c) Show how the construction of part (a) can be used to perform

T−1∑
t=0

|t〉〈t| ⊗Gt

using T − 1 queries to Uf .

d) Assume that M divides N . Show that quantum phase estimation can be used to determine M/N up to
accuracy O(

√
M/N/T ) with high probability. How large does T have to be in order to have a ≥ 1/2

probability of determining M exactly? How many queries are necessary to achieve this classically?

a) Apply Hadamards to the last qubit before and after Uf .

b) Let Π =
∑
x∈f−1(1) |x〉〈x|. Let |s1〉 =

∑
x∈f−1(1) |x〉 /

√
M and |s2〉 =

∑
x∈f−1(0) |x〉 /

√
N −M . If we

define p = M/N , then note that |s〉 =
√
M/N |s1〉 +

√
1−M/N |s2〉. Also G acts trivially on the

subspace orthogonal to {|s1〉 , |s2〉}. On the {|s1〉 , |s2〉} subspace, G acts as(
1− 2p −2

√
p(1− p)

−2
√
p(1− p) −1 + 2p

)
·
(
−1 0
0 1

)
= −

(
1− 2p 2

√
p(1− p)

−2
√
p(1− p) 1− 2p

)
which has eigenvalues eπiθ where θ = sin−1(2

√
p(1− p)).

c) Write t in unary (i.e. T − 1 bits, of which t are equal to 1 and T − 1− t equal to zero). Then apply Vf
T − 1 times, with the same first register and with the control register stepping through the T − 1 bits.

d) Apply phase estimation to |s〉 and we learn either θ or −θ to accuracy 1/T . To translate this into the
error in p, we observe that 2

√
p(1− p) = sin(θ). Assume that 0 ≤ p ≤ 1/2, so

√
p ≤ 2

√
p(1− p) ≤ 2

√
p.

Thus, p ∼ sin2(θ).

Suppose now phase estimation returns θ + ε instead of θ. Then our estimate for p will be off by
∼ ε sin(θ) cos(θ) ∼ ε√p.
Substituting ε ∼ 1/T , we find that the algorithm outputs p ± O(

√
p/T ) with high probability. Thus,

to learn M/N exactly, we need
√
p/T � 1/N , and therefore need T � N

√
p =
√
MN . By contrast,

learning M exactly classically requires Ω(N) queries, even if we allow a probability of error.

If 1
2 < p ≤ 1, then the above bounds hold, but we can do better in the p ≈ 1 regime by estimating

|f−1(0)| instead of |f−1(1)|.


