
Quantum Computing and Information - Problem Set 3 Solutions

Exercise 1. Prove that tr ρ2 ≤ 1 with equality iff ρ is pure (i.e. of the form |ψ〉〈ψ|.Let the eigenvalues of ρ

be λ1, . . . , λd. Then tr ρ2 =
∑d
i=1 λ

2
i ≤

∑d
i=1 λi = 1. The inequality λ2i ≤ λi is tight iff λi ∈ {0, 1}. The case

when all eigenvalues are 0 or 1 is equivalent to ρ being a pure state.

Exercise 2. Prove that the extreme points of D(Cd) are the pure states. If ρ is not pure, then it can be

written as
∑d
i=1 λi|ψi〉〈ψi| with at least two λi > 0. In particular, suppose that 0 < λ1 < 1. Then we can

decompose ρ as a convex combination of two other density matrices as

ρ = λ1|ψ1〉〈ψ1|+
d∑
i=2

λi
1− λ1

|ψi〉〈ψi|.

Conversely, suppose a pure state ψ = |ψ〉〈ψ| can be written as ψ = pσ + (1 − p)ω for 0 < p < 1 and
σ, ω ∈ D(Cd). Since ω ≥ 0, we have ψ ≥ pσ. Thus for any |ϕ〉 orthogonal to |ψ〉, we have trσϕ = 0. This
implies that σ = ψ. A similar argument shows that ω = ψ. Thus, ψ is not an extreme point.

Exercise 3. Alice and Bob share the state

|ψ〉AB =

dA∑
i=1

dB∑
j=1

Ai,j |i〉A ⊗ |j〉B .

Calculate Bob’s reduced density matrix. Like the expression derived in class for Alice’s reduced density
matrix, your expression should not have any subscripts or summation signs in it.

trA |ψ〉〈ψ| = trA
∑

i,i′,j,j′

Ai,jĀi′,j′ |i〉 〈i′|
A ⊗ |j〉 〈j′|B

=
∑
i,j,j′

Ai,jĀi,j′ |j〉 〈j′|

=
∑
i,j,j′

Ai,jA
†
j′,i |j〉 〈j

′|

= (A†A)T = AT Ā

Exercise 4. Bit commitment Alice and Bob have been playing a grueling game of chess and by the end of
the first day, it’s Alice’s move and they’ve only reached the midgame. Alice has only two choices of move (0
or 1), but if she tells Bob then he’ll be able to spend all night planning his response. On the other hand, if
Alice doesn’t tell him her move until morning then she could get an unfair advantage by thinking about her
move all night.

Bob suggests that Alice could write her move on a piece of paper and give it to him in a sealed envelope.
But Alice knows that Bob could easily steam the envelope open, read the paper and reseal the envelope. Instead
she proposes to use quantum mechanics.

Her idea is to prepare one of two distinguishable states |ψ0〉AB or |ψ1〉AB and give system B to Bob at
night, keeping A for herself. Thus she commits to her bit a ∈ {0, 1}. Then she reveals a in the morning by
sending system A to Bob and he performs a measurement to determine whether the state of AB is |ψ0〉 or
|ψ1〉.

Ideally the protocol would be concealing if Bob could not learn any information about a after Alice commits
her bit and before she reveals it (i.e. from system B alone). On the other hand, it should also be binding,
meaning that after committing her bit, Alice is unable to change its value.



Show that both properties cannot simultaneously hold: no commitment protocol can be both concealing and
binding. If the protocol is concealing then trA |ψ0〉〈ψ0| = trA |ψ1〉〈ψ1|. (Otherwise Bob could learn something

about a from trA |ψa〉〈ψa|.) Thus, both purifications |ψ0〉 and |ψ1〉 are related by a unitary transformations
on Alice’s side and she can cheat with no chance of being caught, e.g. by committing to |ψ0〉 and then locally
transforming the state to |ψ1〉 before the reveal phase.

Exercise 5. Separable states

a) Let S be a set in Rd. Prove that any x ∈ conv(S) can be written as a convex combination of d + 1

points in S. That is, there exist p1, . . . , pd+1 ≥ 0, y1, . . . , yd+1 ∈ S such that
∑d+1
i=1 pi = 1 and

x =

d+1∑
i=1

piyi.

b) Let SEP(dA, dB) ⊂ D(CdA ⊗CdB ) denote the set of separable states, defined to be the set of states ρAB

that can be written in the form

ρAB =
∑
i

piσ
A
i ⊗ ωBi ,

where
∑
i pi = 1, each pi ≥ 0, σi ∈ D(CdA) and ωi ∈ D(CdB ). We call states of the form σ⊗ω product

states and can equivalently say that separable states are the convex hull of product states. States that
are not separable are said to be entangled.

Prove that any ρAB ∈ SEP(dA, dB) can be written as a convex combination of d2Ad
2
B product pure

states.

a) By the definition of convex hull and convex combination, x can be written as x =
∑m
i=1 piyi for some

probability distribution p1, . . . , pm and some y1, . . . , ym ∈ S. The only issue is that we may have
m > d + 1. If m ≤ d + 1 then we are done. Otherwise we will show that we can reduce m by one or
more. Using induction (and the fact that m is, by definition, initially finite) this will prove our claim.

Now, suppose that m > d+1. Define the d+1-dimensional vectors ỹi = 1⊕yi. That is, they have a 1 in
the first position, and yi in the remaining d positions. Since there are m of them in a d+1-dimensional
space, they must be linearly dependent. Thus, there exists q ∈ Rm s.t.

∑m
i=1 qiỹi = 0. From the first

position, we have
∑m
i=1 qi = 0. From the remaining d positions, we have

∑m
i=1 qiyi = 0. Thus, for all

real t, if we define p′ = p − tq, then
∑m
i=1 p

′
iyi = x and

∑m
i=1 p

′
i = 1. Thus, p′ is still a probability

distribution as long as we have p′i ≥ 0 for each i.

Let t be the largest number satisfying pi ≥ tqi for each i (equivalently p′i ≥ 0). Since each pi > 0,
our choice of t is strictly positive. Since t cannot be increased, there must be at least one i such that
pi = tqi and thus p′i = 0. Thus, p′ is a probability distribution, supported on < m elements, with
x =

∑m
i=1 p

′
iyi. This satisfies the induction hypothesis and proves the claim.

b) Starting with the decomposition ρAB =
∑
i piσ

A
i ⊗ ωBi , we can further decompose each σi and ωi into

pure states. Thus, we can write ρAB as a convex combination of pure product states. This is contained
in the space of Hermitian dAdB × dAdB matrices, which is a d2Ad

2
B-dimensional real vector space, so

by part (a), we can decompose ρAB into a convex combination of d2Ad
2
B + 1 pure states.

To remove the +1, we need to project ρAB , as well as all pure product states, onto the subspace of
traceless matrices. Thus, we replace ρAB with ρAB−IdAdB/dAdB and write it as a convex combination
of states of the form |α〉〈α|⊗ |β〉〈β|− IdAdB/dAdB . These states live in a space of dimension d2Ad

2
B−1,

so by part (a) of this problem, we can write

ρAB − IdAdB/dAdB =

d2Ad
2
B∑

i=1

pi(|αi〉〈αi| ⊗ |βi〉〈βi| − IdAdB/dAdB).

Adding IdAdB/dAdB to both sides we obtain the desired decomposition.



Exercise 6. Trace distance Suppose that you are given one of two possible d-dimensional states σ1 or σ2,
with probabilities p1 and p2 = 1− p1 respectively. Your task is to perform a two-outcome measurement and
then try to guess which state you had been given, minimising the probability of error.
If the measurement elements are nonnegative Hermitian matrices M1 and M2 = I −M1 then the probability
of guessing wrong is

Perr = p1 tr(σ1M2) + p2 tr(σ2M1).

a) Show that

Perr = p1 −
d∑
i=1

λi 〈i|M1 |i〉 ,

where |i〉 denotes the orthonormal basis of eigenstates of the Hermitian operator p2σ2 − p1σ1 and the
λi are the corresponding eigenvalues.

b) Find the nonnegative operator M1 that minimizes Perr. Show that the resulting error probability is
Perr,opt = p1 −

∑
i:λi<0 |λi|. Hint: Express M1 in the |i〉 basis.

c) For a Hermitian matrix A, define |A|, the absolute value of A, as follows: write A = UDU† for

D =



λ1 0 0 · · · 0
0 λ2 0 · · · 0

0 0
. . . 0 0

0 . . . λd


and U unitary, and then

|A| = U



|λ1| 0 0 · · · 0
0 |λ2| 0 · · · 0

0 0
. . . 0 0

0 . . . |λd|


U†.

Express the trace norm ‖p2σ2 − p1σ1‖1 := tr |p2σ2 − p1σ1| in terms of the eigenvalues λi. Use this,
together with the fact that tr(p2σ2 − p1σ1) =

∑
i λi = p2 − p1, to express Perr,opt as a function of

‖p2σ2 − p1σ1‖1.

d) Evaluate Perr,opt in the following cases:

i) p1 = 1, p2 = 0 and σ1, σ2 are arbitrary.

ii) p1 = p2 = 1/2, σ1 = |ψ1〉〈ψ1|, σ2 = |ψ2〉〈ψ2|, with |ψ1〉 = cos(θ) |0〉 + sin(θ) |1〉 and |ψ2〉 =
sin(θ) |0〉+ cos(θ) |1〉. Check that your answer makes sense when θ is 0 or π/4.

a) Perr = p1 tr(σ1(I − E1)) + p2 tr(σ2E1) = p1 trσ1 + tr(E1(p2σ2 − p1σ1)) = p1 + tr(E1(p2σ2 − p1σ1)) =
p1 + tr(E1

∑
i λi|i〉〈i|) = p1 +

∑
i λi 〈i|E1 |i〉 .

b) Write E1 in the |i〉 basis as E1 =
∑
i,j eij |i〉 〈j|. The second term in Perr is

∑
i λieii. Since 0 � E1 � I,

we have 0 ≤ eii ≤ 1 for each i. Using this we bound
∑
i λieii =

∑
i:λi>0 λieii −

∑
i:λi<0 |λi|eii ≥

−
∑
i:λi<0 |λi|, yielding the desired result.

c)

tr |p2σ2 − p1σ1| = tr(
∑
i

|λi||i〉〈i|) =
∑
i

|λi| =
∑
i:λi>0

λi −
∑
i:λi<0

λi.



On the other hand,

p2 − p1 = tr(p2σ2 − p1σ1) =
∑
i:λi>0

λi +
∑
i:λi<0

λi.

Taking the difference of these two equations yields that

p2 − p1 − tr |p2σ2 − p1σ1| = 2
∑
i:λi<0

λi = 2(Perr,opt − p1),

Rearranging and using p1 + p2 = 1 we find that

Perr,opt =
1− ‖p2σ2 − p1σ1‖1

2
.

d) i) Perr,opt = 0.

ii)

p2σ2 − p1σ1 =
1

2

(
cos 2θ 0

0 − cos 2θ

)
so Perr,opt = 1

2 (1 − cos 2θ) = sin2(θ). If θ = 0, the states are orthogonal and can be perfectly
distinguished, while if θ = π/4 then |ψ1〉 = |ψ2〉 and the best guessing probability is 1/2.

Exercise 7. Purifications Let ρA be a density matrix and |ψ〉AB an arbitrary purification of ρ.

a) Consider a decomposition ρ =
∑
i pi|ϕi〉〈ϕi|, where |ϕi〉 are not necessarily orthogonal to each other,

and {pi} is a probability distribution. Find a measurement on B such that when applied to half of |ψ〉
outcome i occurs with probability pi and Alice’s residual state is |ϕi〉.

b) What if we decompose ρ into ρ =
∑
i piσi for general density matrices σi? Is it still possible to find a

measurement on B such that outcome i occurs with probability pi and the residual state for Alice is σi?

c) Let N be a quantum operation. The entanglement fidelity measures how well it approximates the
identity on ensembles with density matrix ρ, and is defined

Fe(N , ρ) :=
√
〈ψ| (N ⊗ id)(ψ) |ψ〉,

where |ψ〉 is an arbitrary purification of ρ and ψ := |ψ〉〈ψ|. Prove that Fe does not depend on the
purification chosen, and therefore that Fe is well defined.

d) Prove that
∑
i pi 〈ϕi| N (ϕi) |ϕi〉 ≥ Fe for any ensemble satisfying ρ =

∑
i piϕi.

a) Use the definition of measurements in which the outcomes are M1, . . . ,Mk and the matrices Mi are
positive semidefinite and sum to the identity. For any psd matrix M , we define

√
M to be the psd

square root.

Let d = rank ρ. Assume WLOG that ρ ∈ D(Cd). Any purification of ρ can be written in the form√
d(A⊗ I) |Φd〉 , where |Φd〉 =

∑d
i=1 |i〉 ⊗ |i〉 and AA† = ρ.

If we now perform the measurement {M1, . . . ,Mk} on system B and obtain outcome i, then the
unnormalized residual state for Alice is

d trB(A⊗Mi)Φd(A
† ⊗ I) = d trB(A⊗

√
Mi)Φd(A

† ⊗
√
Mi)

= d trB(A
√
Mi

T
⊗ I)Φd(

√
Mi

T
A† ⊗ I)

= A
√
Mi

T√
Mi

T
A†

= AMT
i A
†



This can be thought of as piρi where pi ≥ 0 is the probability of outcome i and ρi is Alice’s residual
density matrix. We would like pi to be the pi given in the problem statement and would like ρi to be
ϕi. Thus, we have AMT

i A
† = piϕi. Since we have assumed that ρ is full rank, A,A† are as well, and

we have
Mi = ((A†)−1piϕiA

−1)T = (AT )−1piϕ
T
i Ā
−1.

To verify positivity, note that piϕ
T
i ≥ 0 and for any psd matrix B and any matrix A, A†BA ≥ 0. To ver-

ify normalization, calculate
∑
iMi = (AT )−1

∑
i piϕ

T
i Ā
−1 = (AT )−1ρT Ā−1 = (AT )−1(A†A)T Ā−1 = I.

An alternate, and arguably simpler, proof is obtained by performing a local change of basis so that
ρ =

∑d
i=1 λi|i〉〈i| and the purification is |ψ〉 =

∑d
i=1

√
λi |i〉 ⊗ |i〉 . In this case, we have the simpler

situation that A is psd and thus A =
√
ρ, implying that MT

i = ρ−1/2piϕiρ
−1/2.

b) Essentially the same argument shows that Mi = (AT )−1piσ
T
i Ā
−1 does the job. Again, if we choose

the purification with A =
√
ρ then we have MT

i = ρ−1/2piσiρ
−1/2.

c)

〈ψ| (N ⊗ id)(ψ) |ψ〉 =
∑
i

〈ψ| (Ei ⊗ I)ψ(E†i ⊗ I) |ψ〉

= d2
∑
i

〈Φd| (A†EiA⊗ I)Φd(A
†E†iA⊗ I) |Φd〉

= d2
∑
i

| 〈Φd| (A†EiA⊗ I) |Φd〉 |2

= d2
∑
i

| tr(A†EiA⊗ I)Φd|2

=
∑
i

| trA†EiA|2

=
∑
i

| trAA†Ei|2

=
∑
i

| tr ρEi|2

which depends only on ρ and not on the choice of purification.

d) By part (a), there exists a measurement in which outcome i occurs with probability i and leaves
the residual state ϕi. Consider this measurement to be a quantum operation called M which, upon
outcome i, leaves the state |i〉〈i|. This can be achieved by taking Ei,j = |i〉 〈j|Ei, for i running over all
measurement outcomes and j ∈ [d]. ApplyingM to the B register of |ψ〉 leaves the state

∑
i piϕi⊗|i〉〈i|.

By the monotonocity of fidelity,

Fe = F (ψ, (N ⊗ id)ψ)

≤ F ((id⊗M)(ψ), (N ⊗M)(ψ))

= F

(∑
i

piϕi ⊗ |i〉〈i|,
∑
i

piN (ϕi)⊗ |i〉〈i|

)

= tr

√√√√(∑
i

√
piϕi ⊗ |i〉〈i|

)(∑
i

piN (ϕi)⊗ |i〉〈i|

)(∑
i

√
piϕi ⊗ |i〉〈i|

)

= tr

√∑
i

p2iϕiN (ϕi)ϕi ⊗ |i〉〈i|

=
∑
i

pi tr
√
ϕiN (ϕi)ϕi

=
∑
i

piF (ϕi,N (ϕi))


