
Quantum Computing and Information - Problem Set 4 Solutions

Exercise 1. Fidelity and trace distance

a) Give an exact relation between F (α, β) and T := 1
2‖α−β‖1 for pure states α = |α〉〈α| and β = |β〉〈β|.

b) Use this to prove that F (ρ, σ)2 ≤ 1− 1
4‖ρ− σ‖

2
1 for general density matrices ρ, σ.
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b) For general density matrices ρ, σ, Uhlmann’s theorem implies that there exist purifications |α〉 , |β〉
satisfying | 〈α|β〉 | = F (ρ, σ). By part (a), 1

2‖α−β‖1 =
√

1− F (α, β)2 =
√

1− F (ρ, σ)2. Next, tracing
out subsystems can only decrease trace distance, so

1

2
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1− F (ρ, σ)2.

Rearranging, we obtain the desired inequality.

Exercise 2. Optimality of super-dense coding and teleportation

a) Suppose that Alice would like to transmit an n-bit message x to Bob, but has access only to m uses of
a noiseless bit channel, for m ≤ n. Assume that x is drawn uniformly at random. Prove that for any
encoding/decoding strategy, Bob’s probability of guessing x is ≤ 2m−n.

b) Show that this bound still holds if Alice and Bob share an arbitrary entangled state |ψ〉 ∈ Cd×d.

c) Can the communication cost of teleportation be improved, possibly at the cost of using more entangle-
ment? Specifically, is it possible to exactly teleport n qubits using some large amount of entanglement,
but using < 2n bits of communication?

d) Similarly, can the communication cost of super-dense coding be improved, again possibly at the cost of
using more entanglement? Specifically, is it possible to transmit 2n cbits using some large amount of
entanglement, but < n qubits of communication?

e) Optional: Prove that n qubits cannot be teleported using fewer than n copies of |Φ2〉 and an unlimited
amount of classical communication. Hint: show that local operations and classical communication has
zero probability of increasing the number of nonzero Schmidt coefficients of an entangled state.

a) We prove the claim first when m = 0. In this case, Bob simply must output a guess without any
input from Alice. His guess may be random (based on randomness that is independent from x) .
However, this will not increase his success probability. To see this, let Bob guess x′ with probability
px′ . Let C(x′) be the probability that x′ is the correct guess. (This is in fact 2−n for any x′ that is a



possible input of Alice, but the same argument can apply in more general settings where this may not
be the case.) Then Bob’s success probability is

∑
x′ px′C(x′) ≤ maxx′ C(x′). Thus, Bob can simply

deterministically guess arg maxx′ C(x′) and he will not decrease his success probability.

However, a deterministic guess by Bob has probability 2−n of being correct (or 0, if his guess isn’t one
of Alice’s possible inputs). This proves the claim for the case of m = 0.

To extend this to general m, we consider an arbitrary protocol P that uses m bits of communication,
and achieves success probability p. We would like to prove that p ≤ 2m−n. Consider a modified protocol
P ′ in which the communication of P is replaced with Bob simply guessing Alice’s m-bit message. If
he guesses randomly, his guess will be correct with probability 2−m. Thus, he will guess x correctly
with probability ≥ p2−m. Since he achieved this without any communication, by our previous result,
we must have p2−m ≤ 2−n, and thus p ≤ 2m−n as desired.

b) In the m = 0 case, the shared entanglement simply contributes a random variable that is uncorrelated
with x. Thus, it is covered by the previous analysis. For the general case, the same guessing protocol
works.

If this is unsatisfying, here is a direct argument. Alice’s encoding strategy can be described as a
measurement Ex
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y ≥ 0 for each x, y and

∑
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c) This isn’t possible. If it were, then we could perform super-dense coding using the qubits teleported
in this improved protocol, and transmit 2n classical bits using < 2n cbits and some amount of entan-
glement. This would contradict (b).

d) This is also impossible, for a similar reason. If this super-duper-dense-coding protocol existed, then we
could use < 2n cbits plus entanglement to teleport the < n qubits used in the protocol. In this way,
we would communicate 2n cbits using < 2n cbits plus entanglement.

e) Our strategy is as follows. First, we show that starting with m copies of |Φ2〉 and using LOCC, we
can only create mixtures of states with Schmidt rank ≤ 2m. Second, we show that any such state (and
thus any such mixture) has fidelity ≤

√
2m−n with |Φ2〉⊗n. Since a low-entanglement teleportation

protocol could be used to turn a small amount of entanglement into a larger amount (using LOCC),
this bound on the fidelity rules out such protocols.

For the first claim, use part (c) of exercise 3 (below) to show that any LOCC protocol maps |Φ2〉⊗m
to a density matrix that is a mixture of states proportional to (Xj ⊗ Yj) |Φ2〉⊗m for Xj , Yj arbitrary

operators. Write |Φ2〉⊗m := 1√
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∑
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This state is a superposition of 2m product states, and thus has Schmidt rank ≤ 2m.



For the second claim, consider first the m = 0 case. In this case, we consider the maximum overlap
of a product state |α〉 ⊗ |β〉 with |Φ2〉⊗n. A direct calculation shows that this is
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Exercise 3. Partial Transpose and Data Hiding

a) Define the transpose map T : Md → Md by T (X) = XT . Show that T is positive but not completely
positive.

b) Show that (id⊗T )(ρAB) ≥ 0 for any ρ ∈ SEP(dA, dB), where SEP is the set of separable states defined
in problem set 3. The operator id⊗T is called the partial transpose.

c) Define the class of LOCC (Local Operations + Classical Communication) operations on D(CdA ⊗CdB )
to consist of all finite-length sequences of measurements by Alice on her system (followed by sending
the measurement result to Bob) and measurement by Bob of his system (followed by sending the mea-
surement result to Alice). Note that measurements can be chosen based on the previous communication
record. Prove that every quantum operation N in LOCC has the form

N (ρ) =
∑
j

(XA
j ⊗ Y B

j )ρAB(XA
j ⊗ Y B

j )†.

d) Suppose that {M, I −M} is a 2-outcome measurement that is implemented by LOCC. Prove that

0 ≤ (id⊗T )(M) ≤ I (1)

e) Let F =
∑d

i,j=1 |i, j〉 〈j, i| denote the unitary operator that swaps the states of two quantum system.
Compute (id⊗T )(F ) and write down its eigenvalues.

f) Since F 2 = I, it follows that the eigenvalues of F are ±1. Define the projectors Π± = (I ± F )/2 and
the data-hiding states ρ± = Π±/ tr Π±. Consider a measurement

M = m+Π+ +m−Π−. (2)

Define the bias of M to be trM(ρ+− ρ−). Calculate the maximum bias for (i) any valid measurement
M , and (ii) any M satisfying Eq. (1). What can you say about the distinguishability of ρ± when Alice
and Bob are restricted to LOCC measurements? Is the “data-hiding” name appropriate?

g) Optional: Prove that the optimal bias (either with or without the requirement that Eq. (1) be satisfied)
is achieved by M of the form in Eq. (2).



a) Beware that transpose is basis-dependent. So we fix a basis |1〉 , . . . , |d〉, called the “standard basis”
and define transpose in this basis.

To show positivity, assume X ≥ 0. Then X =
∑

i λi|vi〉〈vi| with λi ≥ 0 and XT = X̄ =
∑

i λi|v̄i〉〈v̄i| ≥
0.

To show the lack of complete positivity, we note that (id⊗T ) applied to the maximally entangled state
is proportional to F (see (e), below), which is not positive.

b) If ρ =
∑

i piαi ⊗ βi for density matrices αi, βi, then (id⊗T )(ρ) =
∑

i piαi ⊗ βT
i . Since the βT

i are all
density matrices, then (id⊗T )(ρ) is as well.

c) Use induction on the number of rounds, and note that LOCC is defined to include only protocols with a
finite number of rounds. Consider a protocol with at most m rounds. We can model this as alternating

quantum operations by Alice and Bob. First Alice applies an operation with Kraus operators {X()
a1}

(i.e. sending ρ to
∑

a1
(X

()
a1 ⊗ I)ρ(X

()
a1 ⊗ I)†) and then she sends the measurement outcome a1 to Bob.

Sending the complete outcome to Bob is WLOG since the most general thing Alice could do would be
to (a) add some random bits to the message, and (b) apply some deterministic maps to the message.
However, (a) can be simulated by adding more measurement outcomes, and (b) can be simulated by
Bob ignoring part of the message.

Then Bob does a measurement conditioned on a1, which we call {Y (a1)
b1
}, and he sends the outcome b1

to Alice. She performs a measurement {X(a1,b1)
a2 } conditioned on a1, b1, sends the outcome a2 to Bob

and so on. After m rounds, we have mapped ρ to∑
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(X(a1,b1,...,bm−1)
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Let j = (a1, . . . , am, b1, . . . , bm) and define

Xj = X(a1,b1,...,bm−1)
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X()
a1

Yj = Y
(a1,b1,...,am)
bm

· · ·Y (a1,b1,a2)
b2

Y
(a1)
b1

d) We can achieve any LOCC measurement {M, I−M} by performing an LOCC operation and grouping
together measurement outcomes. So both M and I −M can be written in the form

∑
j Xj ⊗Yj where

now Xj , Yj are psd operators. Thus (id⊗T )(M) =
∑

j Xj⊗Y T
j ≥ 0 and similarly (id⊗T )(I−M) ≥ 0.

Rearranging we find
0 ≤ (id⊗T )(M) ≤ I.

e) (id⊗T )(F ) =
∑

i,j |i〉 〈j| ⊗ |i〉 〈j| = dΦd, where Φd = |Φ〉〈Φ|d and |Φd〉 =
√

1d
∑d

i=1 |i〉 ⊗ |i〉. Thus
(id⊗T )(F ) has a single non-zero eigenvalue, equal to d.

f) The bias is m+ −m−. For (i), we have the constraints 0 ≤ m+ ≤ 1 and 0 ≤ m− ≤ 1. Thus we can
take m+ = 1 and m− = 0 and achieve bias of 1. For (ii) we have the additional constraint that

0 ≤ (id⊗T )(M) =
m+ +m−

2
I+

m+ −m−
2

dΦd =
m+ +m−

2
(I−Φd)+

(d+ 1)m+ − (d− 1)m−
2

Φd ≤ I.

This implies the constraints 0 ≤ m++m− ≤ 2 (which is redundant) and 0 ≤ (d+1)m+−(d−1)m− ≤ 2.
Rearranging the upper bound, we obtain m+ ≤ 2

d+1 + d−1
d+1m− and thus m+ −m− ≤ 2

d+1 + d−1
d+1m− −

m− = 2
d+1 (1 −m−) ≤ 2

d+1 . On the other hand, this bias is achieved by taking m+ = 2/(d + 1) and
m− = 0. (This argument is an example of LP duality, lest it seem mysterious. Of course in 2-D,
everything is easy.)

We conclude that the states are indeed “hiding”, at least against LOCC, since ρ± are nearly indistin-
guishable via LOCC, even though unrestricted measurements can distinguish them with certainty.



g) Without Eq. (1) the problem is trivial: measurements of the form Eq. (2) already achieve bias 1, so
relaxing the contraint cannot improve things. Now, consider the case when we require Eq. (1). First,
observe that tr Π± = d(d ± 1)/2. Thus, ∆ := ρ+ − ρ− = I+F

d(d+1) −
I−F

d(d−1) = 2 dF−I
d(d2−1) . The bias is

thus trM∆ = 2
d(d2−1) (d trMF − trM). Guided by our use of LP duality from before, we will write

d trMF − trM = (d − 1) trMF − trM(I − F ) ≤ (d − 1) trMF , where the last inequality is because
M ≥ 0 and I − F ≥ 0. Thus, the bias is ≤ 2

d(d+1) trMF .

Next, let AΓ := (id⊗T )(A), and note that trAB = trAΓBΓ. In this language, Eq. (1) means that
0 ≤MΓ ≤ I. Now express the bias as

trM∆ ≤ 2

d(d+ 1)
trMF ≤ 2

d+ 1
trMΓΦd ≤

2

d+ 1
, (4)

where in the last step we have used the fact that MΓ ≤ I.

An alternate proof is to use symmetry to show that any measurement can WLOG be taken of the form
in Eq. (2). This approach, and indeed the entire problem, is taken from quant-ph/0203004.


