IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 4, JULY 1981

417

Proofs of Networks of Processes

JAYADEV MISRA, MEMBER, IEEE, AND K. MANI CHANDY

Abstract—We present a proof method for networks of processes in
which component processes communicate exclusively through mes-
sages. We show how to construct proofs of invariant properties which
hold at all times during network computation, and terminal properties
which hold upon termination of network computation, if network
computation terminates. The proof method is based upon specifying a
process by a pair of assertions, analogous to pre- and post-conditions
in sequential program proving. The correctness of network specifica-
tion is proven by applying inference rules to the specifications of com-
ponent processes. Several examples are proved using this technique.

Index Terms—Communication networks, distributed systems, message
passing systems, program proofs.

I. INTRODUCTION

E propose a proof technique for networks of processes

in which component processes communicate exclu-
sively through messages, as in Hoare [8]. The technique is
based upon specification of a process 4 by a pair of assertions
r and s, analogous to pre- and post-conditions in sequential
program proving. The specification is denoted by r|k|s, which
means: 1) s holds initially in A4 and 2) if » holds at all times
prior to any message transmission of A, then s holds at all
times prior to and immediately following that message trans-
mission, where a message transmission of process A could be
either # sending or A receiving a message.

The proof technique is built around a few inference rules.
These rules allow us to deduce the specification of a network
from -the specifications of its component processes. The
advantages of such a proof technique are the following.

1) A network specification is obtained solely from com-
ponent process specifications and not from the details of
process implementation.

Manuscript received May 23, 1979; revised August 18, 1980. This
work was supported by the National Science Foundation under Grant
MCS79-25383 and ARPA Grant Systems Performance Modeling Part
11 N00039-78-G-0080.

The authors are with the Department of Computer Sciences, Uni-
versity of Texas, Austin, TX 78712.

2) The proof technique supports the hierarchical decom-
position of networks. Starting with R, S for network H, we
construct #;, s; of component processes A;’s, such that the
component process specifications yield the desired network
specifications. The %;’s may in turn be networks themselves,
in which case decomposition of #;’s into component processes
proceeds hierarchically in the same manner.

We give several examples which demonstrate the power and
convenience of using r, s to specify a process. Our inference
rules are built upon Hoare’s theory of traces [9].

II. A MoDpEL OF A NETWORK OF PROCESSES

We are not concerned with the definition of an entire pro-
gramming language in this paper. We are concerned only with
proving properties about message communication among
processes. We consider the message communication mecha-
nism proposed by Hoare [8]. The example programs will be
written in Hoare’s CSP with the following minor differences.
CSP uses an explicit process addressing mechanism in message
communication. For instance, process 4 may have commands
of the form B7x to receive a message from process B and put
its content in local variable x; similarly B!x denotes transmis-
sion of a message to process B, where the content of the mes-
sage is the value of x. For autonomous proofs it is preferable
to avoid explicit process naming. Hence, we will only allow
process 4 to communicate using commands of the form C7x
or Clx, where C denotes a channel (see Section II-B). As
Hoare has noted, addressing via channels is semantically equiva-
lent to explicit process addressing.

We expect the reader to know CSP because our model is
derived from it. We briefly summarize below concepts related
to message transmission that we use in this paper.

A. Process

A process communicates only by sending or receiving mes-
sages. A process is either a sequential process, i.e., a sequential
program with commands for message transmission, or a
network of processes, as described next.

0098-5589/81/0700-0417$00.75 © 1981 IEEE

418

B. Network

A network consists of a collection of processes and channels
where processes transmit messages via channels. A channel C
is directed from exactly one process #; to exactly one other
process h;; C is then said to be incident on h; and h;. Process
h; (or hy) is said to be waiting on C if h; (or ;) is waiting as in
CSP, to send (or receive) a message along C. Messages can only
be transmitted along the direction of a channel. If both A;
and 4; are within a network H, then C is said to be internal to
H. 1f h; is within H and A; is not, C is said to be incident on H
and directed away from H; in this case H is said to be waiting
(to send a message) on C if A; is waiting on C. Similarly, C
is incident on and directed towards H if 4; is within H but A; is
not; # is said to be waiting on Cif 4 is.

Consider channel C directed from process k; to h;. A mes-
sage may be transmitted along C only if &; is waiting to execute
a statement of the form C!x and k; is waiting to execute a
statement of the form C?y. The effect of transmission of the
message is to assign x to y.

C. Hierarchical Process Construction

A process & within a network H may be implemented either
as a sequential process or as a network of processes. However,
processes (other than 4 itself) do not know the implementa-
tion of k; these processes are only concerned with A’ inter-
action with other processes in H and not with interactions (if
any) among component processes of 4. The external specifica-
tion of h will specify the manner of interaction of A with
processes external to it. The external specification is inde-
pendent of the implementation of 4.

If & is implemented as a network of processes, it is often
convenient to have an internal specification of h from which
the external specification may be abstracted. The internal
specification will specify the manner of interaction between
component processes of A, as well as between component
processes of & and processes external to A.

The proof mechanism is as follows. The internal and ex-
ternal specifications of a sequential process are identical. The
internal specification of a network A is derived by using the
inference rules from external specifications of its component
processes. We next abstract the external specification of %
from its internal specification, by using the inference rules.

D. Trace

The theory of traces of communicating sequential processes
is due to Hoare [9]; we use slightly different notation and
adapt a small fragment of that theory for this paper. Work
on traces of sequential programs was first carried out by
Bartussek and Parnas’ and McLean.?

The external trace of a process h at any point in a computa-
tion is a sequence of tuples <(Cy,v;), (C,,v5), ",

1y, Bartussek and D. Parnas, “Using traces to write abstract specifica-
tions for software modules,” Dep. Comput. Sci., Univ. of North Carolina
at Chapel Hill, Chapel Hill, NC.
J. McLean, “A formal foundation for trace specification,” in Infor-
mation Processing Systems, Code 7592, NRL, Washington, DC 20375.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 4, JULY 1981

(Cy, vp)>, where in that computation the ith message sent or
received by A is along channel C; incident on h and has value
v, i=1,--+,n.

The internal trace of h at any point in a computation is a
sequence of tuples <(Cy,v;),* "+, (Cy,v,)>, where in that
computation the ith message transmitted on all channels
incident on or internal to h, is transmitted along channel C;
and has value vy, i=1, -+, n. Injtially all traces, internal and
external, are null sequences and will be denoted by empry.

All assertions r and s will be on traces exclusively; thus, the
entire proof technique deals only with propositions on traces.
A trace may be considered to be an “auxiliary variable” for
proof purposes. The notion of auxiliary or mythical vari-
ables was first introduced by Clint [2].

Let t=<(Cy,vy),- -, (Cv3),++,(Cy, v,)> be a trace.
We say that the assertion r holds up to the kth point in ¢ if 7
holds for all traces <(Cy,vy), " -, (C;, v;)>, where 0<i<k
and i < n1; note that r holds for the empty trace in this case.

1. INFERENCE RULES

An external specification of process 4 is given by a pair of
assertions r, s on the external traces of s, where r states what
is assumed by A and s states what ki establishes under this
assumption; we denote this specification by r|#|s. Formally,
rih|s denotes that: 1) s holds initially in # and 2) if r holds up
to the kth point in any external trace of A, then 5 holds up
to the (k + 1)th point in that trace, for all k > 0,

An internal specification of process 4 is defined similarly
on the internal traces of 4 and is denoted r[A]ss.

A. Notation

It is often convenient to consider only the sequence of mes-
sages transmitted along a channel C in a trace; this is denoted
by ZC. We adopt the following notations for sequences.
In the following Z, Z, , Z, denote sequences.

Z denotes the length of Z.

Z, = Z, denotes that Z, is an initial substring of Z,. Note:
Z «x Z for every Z.

Z, =Z, denotes that Z, and Z, are identical sequences.

empty denotes the sequence having no element. Note:
empty = Z, for any Z.

Z1Z, denotes the sequence obtained by concatenating Z,
at theend of Z,.

<ey, e, ,e,> denotes a sequence having elements e,,
e, * - e, in this order.

B. Example: Specification of a Buffer [8]

A buffer process 4 has two incident channels: in directed
towards h and out directed away from it. Buffers may be
specified easily using 7|k|s. A common specification is: the
sequence of messages output by the buffer must be an initial
subsequence of the sequence of messages received by the
buffer. This is written as truelh|Zout « Zin.

Note that this is only one specification of a buffer; more
detailed specifications can be obtained if desired.

MISRA AND CHANDY: PROOFS OF NETWORKS OF PROCESSES

C. Example: Merge

A process merge has two input channels, in;, in, and an out-
put channel out. merge expects to receive positive monotone
increasing integers along each of in; and in, ; merge performs
an on-the-fly merge of the received sequences and sends the
resulting monotone increasing sequence along out.

1) merge:

[in,?x|liny 7p] ; {wait to receive in parallel along in, and in, }
w[x <y -—>outlx;in;?x

Oy <x-—outly,iny?y

Ox =y —out!x; [ing 7xllin, 7y]

]

Let mi(Z) denote that Z is a monotone increasing sequence.
A specification for merge is the following.

2) mi(Zin,), mi(Ziny)|merge|\mi(Zout), Zout CZiny U
Zin, , where Zout C Ziny U Zin, means that the set of values
of the output sequence is a subset of the inputs. This specifi-
cation states that if inputs along both channels are monotone
increasing, then the output is also monotone increasing and is
a subset of the inputs.

D. Inference Rules

1) Rule of Network Composition: This rule allows us to
deduce the internal specification of a network H from

the external specification of its component processes #;,
i=1,2,-

ri\hils;, alli
(and r7) [H] (and 5

The validity of this rule follows easily by considering any net-
work trace where (alnd 7;) holds up to the kth point in the

trace and therefore from the hypothesis, (a?d 5;) holds up to

the (k + 1)th point, for every k = 0.

2) Rule of Inductive Consequence: This consists of two
parts relating to the implication on precondition and implica-
tion on postcondition.

(sandr)y=r', r'[h]s

rihls M
rfals’, s'=s
rlhls @

The validity of (2) is easy to see. Equation (1) can be estab-
lished by induction on the length of the internal trace: we
show that s holds up to the (¥ + 1)th point in any trace pro-
vided r holds up to the kth point of the trace, k 2 0. s holds
initially from r'[A]s. Inductively, if (s and) hold up to the
kth point of any trace, then 7' holds up to that point and
hence it follows from 7'[#]s that s holds up to the (k + 1)th
point of the trace.

3) Rule of Abstraction: These rules aliow us to construct
an external specification from an internal specification and
vice versa. These rules are easily established.

419
rihls

— 3
rlhls)
rlhls; r,s are assertions on external traces of 2 @)

rihis

Equation (3) states that any external specification of & can be
treated as an internal specification. Equation (4) states that
any internal specification can be treated as an external specifi-
cation provided that the internal specification does not specify
transmission along internal channels. In such a case all internal
communications of the network are hidden in the same way
that a value of a local variable is hidden outside a block.

E. Theorem of Hierarchy

This theorem allows us to go directly from the external
specifications of component processes /;’s of a network H to
the external specification of H. The theorem follows directly
by the application of the inference rules. This theorem has
been used extensively in proving the examples in this paper.

Theorem of Hierarchy:

Forall i, r;lhils;; (Sand Ro) =R, 5= 5,
RolHIS,

where Ry, So are assertions on the external trace of H, and R,
S, denote and 7;, and s;, respectively.
I z

IV. EXAMPLES
A. Network of Merge Processes

Consider a network H of merge processes (see Section I1I-C),
hy,hy, hsy,as shown in Fig. 1.

We are given the following specification for each merge pro-
cess with input channels in; and in, and output channel ouz.

mi(Ziny), mi(Zin,)|\ merge |\mi(Zout), Zout C Zin; U Zin,.
We wish to prove Ry |H|S, for the network H, where
allk,j=1,2

SO =mi(Zout3),ZOut3 gk U 2Zl.nk i+
,7=1, ’

Ro = mi(Ziny),

From the definition
S = mi(Zout,), mi(Zout,), mi(Zouts), Zout, C Zin, ,
U Ziny 1, Zout, C Ziny 5 U Zin, 5, Zout, C Zout,
U Zout,
R =mi(Zing ;),k,j =1,2; mi(Zout,), mi(Zout,)
it is obvious that
Sand Ry =R, 5=35,.
Hence, we have Ry |H|Sq, from the theorem of hierarchy.

B. Computing Odd Primes (Adapted From Hoare [8])

1) Description of the Network: The network H consists
of one input channel m, from the environment and one out-
put channel output to the environment. H receives the se-

420

output

Fig. 2. Schematic representation of the network H to compute odd
primes.

quence of all odd integers greater than or equal to 3 in in-
creasing order; [outputs the sequence of primes greater than
or equal to 3. Hence, it is required to show the following.

a) Zmy = odd|H|Zoutput & oddprime
where

odd is the sequence of all odd integers > 3
in increasing order,

oddprime is the sequence of all primes > 3
in increasing order.

The structure of the network is shown schematically in Fig. 2.

H consists of two types of processes: sieve and printer. In
order to simplify description, we assume that there are an
infinite number of sieve processes, designated by sieve,,
sieve, - - - sieve; - - . sieve; has one input channel m; by
which it receives input from sieve;_; (environment, if i = 1).
Channels m;, i = 2,3 - - - are internal to H, but m; is incident
on and directed towards H. sieve; has two output channels
My, and print;. The latter is directed toward a printer process
of which there is exactly one in H. The printer process has
one output channel output, which is the only output channel
incident on H.

2) Description of sieve;: The very first message p received
by sieve; is sent on to the printer process. Every subsequent
message x received by sieve; is checked to see if it is a multiple
of p (see Hoare [8] for a clever algorithm due to Gries to
implement this); if x is not a multiple of p it is sent on to
sieve;,y, if x is a multiple it is discarded. sieve; assumes that
it receives a monotone increasing sequence of positive integers
relatively prime to the first i primes. Given this assumption
sieve; asserts that it outputs a monotone increasing sequence
of positive integers, relatively prime to the first (i + 1) primes.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 4, JULY 1981

See the Appendix for a detailed description and proof of
sieve;.

Note that the first item p received along m; is the ith prime
greater than or equal to 3, under the given assumption.

3) Specification of sieve;: Let seq; be the monotone
increasing sequence of positive integers relatively prime to
the first j primes (i.e., relatively prime to the first (G-1
odd primes).

Let Z denote the ith element of sequence Z.

For sieve; we have: r|sieve;|s, where

r Zm; < seq;

s: 1) Zmyyy & seqiy,
2) Zprint; = empty or Zprint; = <oddprime >
3) Zm;=0= Zprint; = empty
4) Zmy,, > 0= Zprint; = <oddprimeD>

sieve; assumes r, i.e., its input is a monotone increasing
sequence of positive integers relatively prime to the first i
primes. It establishes that: 1) its output is a monotone in-
creasing sequence of positive integers, relatively prime to the
first (7 +1) primes, 2) at most one message is sent to the
printer, which is the ith odd prime, and 3), 4) upon receiving
the first message, sieve; will send that message on to the
printer and sends subsequent messages (if any) to sieve;,, .

4} Description of Printer: The printer process waits to re-
ceive input along all input channels. Upon receiving an input,
it sends the received value along oufput. This continues

indefinitely.
5) A Specification of the Printer: The specification uses
assertions on the external trace <(Cy,vy), - (Cj,v;) -+ >

of the printer.

ri true

5: 1) Cyi.q =print;, for somej, i=1,2,-
2) Cy; = output, i=1,2,-
3) v3jq = Uy, i=1,2,

6) Network Proof: We wish to show R,|H|S,, where
Ry is Zm, =o0dd, S, is Zoutput < oddprime. Let rsieve;,
ssieve; denote the r, s associated with sieve;.

a) Sand R, = R, since Ry = rsieve, ; ssieve;..,
= rsieve;, i > 1.
b) We next show that S = S,.
Given S, Zprint; = empty = Zmy,, =0, from ssieve;.
Z;{,:E 0= Zprint;,, =empty, fromssieve, , .

Therefore, Zprint; = empty = Zprint; = empty, j >i. For any
trace <(Cy,04), (C2,02) "~ (Civ;) - - - > of the printer, we
have therefore

vy > =Zprint; = <oddprime(i)>,

from ssieve; and above observation,

MISRA AND CHANDY: PROOFS OF NETWORKS OF PROCESSES

Ugio1 = Uy, from s of printer,

Zoutput = <v,,V4, U4 * ° - > < oddprime.

The required proof follows from a) and b) using the theorem
of hierarchy.

C. A Network for Computing Factorial Streams:
Demonstrating Hierarchical Decomposition

Consider a process H, having one incident input channel x,
and one incident output channel w;. The process receives a
stream of nonnegative integers along x,. The process delivers
a stream of factorials of the input sequence along w, .

1) Description of the Network: H is a network consisting
of an infinite number of processes CPy - - - CP; - - -, as shown
in Fig. 3. The assumption of an infinite number of processes
is for brevity in exposition-—it is sufficient to assume that
there are more processes than the largest integer received by H.

The process CP; has two input channels x;, w;,, and two
output channels x;,,, w;. CP; receives a stream of nonnegative
integers (one at a time) along x;. It delegates the responsibility
of computing the factorial of the next lower number to CP;,,
(if the number is positive) by sending the next lower number
to CP;,, along x;.,. It receives the response from CP;,,
via w;,; and produces its own output along w;. The opera-
tions are asynchronous in that many inputs may be read be-
fore any output is produced. There is parallelism in this
computation since various CP’s may be working on computing
the factorials of different inputs.

2) Proof of the Network—Notations: If Z is a sequence of
integers

0 < Z denotes that each element of Z is nonnegative,

Z! denotes the sequence in which each element is the
factorial of the corresponding element of Z,

red(Z) denotes the sequences obtained by deleting all 0’s
from Z and decrementing all other numbers by 1.

The external specification of H is
0<Zx|H|Zw; x Zx!

Let r;|CP;|s; be the external specification of CP;,i > 1, where
ri L OSZx;, Zwiyy 22X
$; 10 Zxiyy < red(Zx;), Zw; < Zx;!

The proof of H follows from the theorem of hierarchy and the
external specifications of the CP;: (Sand 0<Zx,;)=R,
S= (2w, xZx;!).

3) Description of CP;—The Next Refinement Step: CP; is
again a network of processes, schematically depicted in Fig. 4.

For notational convenience, we drop the subscripts in x;,
Wi, Xis1, Wisp and refer to them as x, w, £, e, as shown in
Fig. 4.

CP cansists of five processes: in, out, ba, bd, bu. Each of
ba, bd, bu is a buffer process of the type described in Section
III-B. The process in executes the following loop indefinitely.
It receives a nonnegative integer dx along channel x. I dx is

421
mll ,rwl
b |
P
1
T
1
.L‘\L ' TM_
P .
T
Tir1 Yin
)
i
i

Fig. 4. A schematic of CP;.

positive send dx - 1 along channel y to buffer bd. Next send
dx along channel r to buffer ba.

The process out executes the following loop indefinitely.
It receives a nonnegative integer du along channel u from
buffer ba. If du is O, next send 1 (one) along channel w,
completing the loop. If du is positive, next wait to receive an
integer dv along channel v, and after receiving dv send out
the product of du and dv along channel w, thus completing
the loop.

It is unfortunate that CSP uses “!” as a symbol for sends, as
this conflicts with the use of the same symbol for factorial
function. It should be obvious from the context which usage
is meant; for instance “!” stands for sends in the following
program.

The process in is described by the following program.

in o
*[true — {loop forever}
x?dx;
fdx = 0 —skip
Odx#0-=>yl(dx-1)
Is
rldx
]
The process out is described by the following program.
out ..
*[true = {loop forever}
uldu;
[du=0—-w!l
Odu+#0—vldv, wldu*dv
]
]

422

4) Proof of CP: 1t is required to show Ry |CP|S,, i.e.,
0<Zx,Ze xZt)|CP(Zt = red(Zx), Zw = Zx!).
We can show the following:
rilh;ls;, for all i, where r;, h;, s; are as given in Table L.
Then S and Ry = R (shown in Section IV-C5).
S = So, trivially.

The result follows from the theorem of hierarchy.

The only nontrivial proof for component sequential pro-
cesses of a CP is for process out, which appears in Section
VII-C. We leave the proofs of other component processes to
the reader. We now show that S and R, = R.

5) Proofof Sand Ry = R:

Sand Ry = 0 < Zx, trivially.
We next show S and Ry = Zv < red (Zu)! and 0 < Zu.
ZvxZe, ZexZt!, Zt < Zy = red(Zx) (from S and R,).
Hence,

1) Zv xred(Zx)!,

2) Zu = Zr x Zx (from S),

3) since 0 < Zx, using 2) we have 0 < Zu,
4) also from 2), red(Zu)! x red(Zx)!,

5) red(Zu) = Zv(from S),

6) from 1),4),5), Zv < red(Zu)!

The result follows from 3) and 6).

V. A MopeL oF COMMUNICATION WITH PARAMETERS

We present a model in which a process may communicate
with its environment by parameters as well as by messages. We
show how parameters are passed to the process at process
instantiation and how results are returned at termination. As
Hoare has shown [8], the notion of a message communicat-
ing process is very general in that it can be used to model a
number of well-known programming language constructs. We
show that augmenting a process by the addition of parameter
passing capability naturally extends Hoare’s parallel command
to include procedure calls and to allow recursion. The pre-
vious sections are restricted to the case where no parameter is
passed; we now show simple extensions to the inference rules
to handle parameter passing. Details of this model may be
found in [4]; we present an abbreviated version here, merely
to explain the new inference rules.

A. Procedure and Process

A process which communicates only via parameters is a
procedure, It is invoked by a call and passed parameters. Its
invoker is suspended until the procedure terminates. At
termination the results of the procedure’s computation are
returned via parameters to its invoker.

A procedure which is implemented as a sequential process
is well understood. A procedure which is implemented as a
process which is a network is also called and passed parameters.
The call results in the instantiation of the process. A process

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 4, JULY 1981

TABLE 1
SPECIFICATION OF COMPONENT PROCESSES OF CP
L h s
0< Zx in Zr = Zx,Zy « red(Zx)

Zv < red(Zu)!, 0 < Zu out red(Zu) = Zv, Zw « Zu!
true ba ZusZr
true bd Zt < Zy
true bu Zve Ze

implemented as a network is instantiated by instantiating its
component processes and passing them parameters as follows.
We only permit value and result parameters. Value parameters
cannot be altered by any process; thus, a process which is
passed a value parameter may pass it on to an arbitrary num-
ber of component processes as value parameters. Result
parameters are partitioned among component processes, i.e.,
each result parameter passed to a process must be passed to
one and only one component process. A sequential process is

_instantiated by creating a fresh copy of it and passing it

parameters.

During the lifetime of a process, it communicates exclusively
via messages; it treats value parameters as constants and result
parameters as local variables.

A sequential process terminates in conventional manner by
executing the commands up to the end of its program; a net-
work terminates when all its component processes terminate.
Upon termination of a procedure, its result parameters are
passed back to its invoker. Upon termination of a process
which is a component of a network, the result parameters are
passed back to the network. The network cannot alter these
result parameters; it simply passes them on to its instantiator
upon termination.

A procedure may be written using recursion even though it
is implemented as a network of processes. For example, a
procedure H may consist of processes s, -, K, and any
component process A; may call A in turn, resulting in a fresh
instantiation of procedure H.

B. Specification Mechanism and Inference Rules

1) External Specification: We use four assertions to specify
each process: two assertions p, ¢ corresponding to parameters
as in sequential program proving and two assertions 7, s cor-
responding to message transmission, as described earlier in
this paper. ‘

r, s name only the external trace of 4 and constants (includ-
ing value parameters) and p, ¢ name only the external trace,
result parameters and constants (including value parameters).

{r;p} |h| {g;s} denotes that: ,

1) if p holds initially in A then s holds initially in A,

2) if p holds initially in /% and r holds up to the kth point in
any trace of &, then s holds up to the (k + 1)th point of that
trace for all k > 0, and

3) if p holds initially in 4 and 7 holds at all times during the
life of A and A terminates, then g holds on termination.

The reader may verify the following specializations. If r and
s are absent (or true), we can drop them and write

{p} h {q}

MISRA AND CHANDY: PROOFS OF NETWORKS OF PROCESSES

which then has its usual meaning as in sequential program
proving [7]. If p, q are absent (or true), we can drop those
and write

rihis

which has the meaning described earlier in this paper.

2) Internal Spécification: The internal specification for a
process h, deroted by {r;p} [k] {g; s}, is identical to that
given in Section V-Bl except that r, s, p, 4 refer to the inter-
nal trace.

3) Inference Rules: The inference rules and the theorem of
hierarchy for the general model are the obvious extensions of
those given in Section III-D, using the rule of consequence
from sequential program proving for component assertions
p, q. We show below one inference rule and the theorem of
hierarchy.

Rule of Network Composition:
component processes /1y - h; e

{ri; i} \hil {qy; i3, foralli
{R; P} [H] {Q;S}

where R, P, Q, S denote (a?d i), (a?d pi), (and gq;), (agld 5
z

Let H be a network with

respectively.
Theorem of Hierarchy:
processes h;, 1=1,2,- -+

For a network H, with component

423

U

partition

v

Fig. 5. Schemiatic of partition.

2) small (uo, u) large (vo, V)

U =uUyp, U= Vg,
mMA = -0, X 1= o)

*Imn <mx >

mn = -0, px 1= +o0;
*Imn <mx —>

mx = max (u); hi ? mx;
hilmx; v:i=v U {mx},
u =y - {mx}; mn = min(v);
lo 7 mn; lo'mn;
u:=ulJ {mn} v:=v- {mn}
] 1

B. Proof of Partition
We use last(Z) to denote the last element of a sequence Z;

for all £, s pi} Vil {ass s0)3S and Ro = R3S = So3 Po = P30 = Qo

{Ro;Po} |H | {QO;SO}

where R, P, Q, S denote (an i), (alr_ld Pi)» (a?d q:), (a?d 1),

respectively.

VI. AN ExaMprLE EMPLOYING THE GENERAL MODEL

The following problem and its solution first appeared in
Dijkstra [5]; a formal proof of the solution also appears in

[1}.

A. Problem Description

It is required to design a procediire partition (ug,vo, 1, V),
where uq, Vo are value parameters, u, v are result parameters
and all parameters are sets of integers. It is given that u, and
v, have no common element. Partition is required to compute
u, v such that &i= o, 0 = v, (Where 4 denotes the size of set
A), uUv=uoUv, and max(u)<min(v). Formally, the
specification for partition is

1) {up Nvo =@} partition (4o, vy, u, V) {u=uy,0=7,

uUv=ugy Uug, max(u) <min(v)}.

The solution to this problem employs two processes, small
and large, where small is passed u, as a value parameter and
returns u as the result; large is passed vy as a value parameter
and returns v as the result. small and large communicate via
two channels Ai and lo, as shown in Fig. 5. The programs for
small and large are shown next.

it is undefined if Z is empty. Zlo and Zhi would be used both
as sets and sequences; the usage will be evident from the
context.

1) Specification of small: small assumes that the numbers
in the sequence Zlo are from uy U vy and that uo, vo are dis-
joint. It establishes that all numbers in its output sequence
Zhi are from uy Y vo, and if it terminates, the last number
received along lo before termination is max(u). Formally, we
can establish {r; p}lsmall} {g;s}, where

riiZloCug Vg

s 10 ZhiCug Yo

p ugNug =0

q :: last(ZIo) = max(u), u =g, u Sug U v,.
2) Specification of large: Similarly, for large
¥ ZhiCug Vg

s 10 Zlo Cug Vg

piiugNug=0Q

q :: last(Zioy <min(v),v="v¢,0 St Uyg.

3) Proof of Correctness and Termination: The desired
result follows trivially from the theorem of hierarchy.

We next show how termination can be proven for the in-
dividual processes. We define a metric [lw]l for a set of integers
w as

424

Iwll= 2 x.

xew

Note that |lu]l and |lvll are both bounded above and below,
since their elements are obtained from the finite sets u, and
vo. It is trivially shown in small (large) that llull (llvl]) in-
creases (decreases) in every iteration but the last by showing
that if ||«']] (J|U']}) is the value of |lul| (llvll) at the start of an
iteration, then ||| + mn - mx (') - mn + mx) is the value
of llull (llvll) at the end of that iteration, and mn < mx except
for the last iteration.

VII. PROVING r|h]s FOR SEQUENTIAL PROCESS 4
A. Proof Rules for Message Transmission Commands

Let tr(h) denote trace of A, Initially, tr(h) = empty.
1) The message transmission command e!x in 4, has the
same semantics as

tr(h) = tr(h)] <(e, x)>.
2) The commarnd e?x in A, has the following semantics.
a) {r(h)=1r"} e?x {tr(h) = tr°| <(e, x)>} and

b) {p}e?x {p}, provided p has no free occurrence
of tr(h) or x.

Note that in case b) if p is an assertion containing a free occur-
rence of x, we cannot assert anything following the receipt
of x.

B. Provingr\h|s

For a sequential process k, r|h|s may be shown by using
only sequential program proving ideas. An annortared program
is one in which the program text is interleaved with assertions
at appropriate places. Every statement 7 in an annotated pro-
gram has a unique precondition pre(T") and a unique post-
condition post(T), such that

{pre(T)} T {post(T)}

is deducible in the axiom system under consideration. If there
are two adjacent assertions Py, P, in the annotated program
then P; must imply P,. We use the system of Hoare [7]
augmented with the proof rules in Section VII-A for message
transmission.

The reader is referred to Owicki and Gries [13] for a clear
description of sequential program annotation.

In order to prove rlhls, we need more than a conventional
annotation of 4; we need to introduce the assertion r at proper
program points.

1) Proof Steps:

a) Initially assert that the trace of 4 is empty (hence all
incident sequences on h are empty).

b) Show that s holds initially in 4.

c) Assert r at all program points. (Note: Since r is af-
fected only by message transmission commands, it is sufficient
to assert r prior to and following every message transmission
command.)

d) Construct an annotation of &.

e) For every message transmission command M prove that

>

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 4, JULY 1981

{pre(M)} M {s}

where pre(M) is the precondition of M in the annotation.
Note that pre(M) is obtained from the annotation constructed
in step d, however, this proof step cannot assert s from the
annotation of step d), s must be proven using the proof rules
of Section VII-A.

Intuitively, for any statement A, pre(4) constructed by the
above procedure denotes the condition that holds immediately
before execution of 4 assuming that: 1) the trace of & is
initially empty and 2) r holds at all points in computation
prior to the execution of 4.

2) Proving {r;p} |h| {g;s}: The procedure for proving
{r;p} |h| {q;s} is similar to the procedure outlined in Section
VII-B1. Step a) will be replaced by a") and step f) is added at
the end.

a') Initially assert that the trace of 4 is empty and p holds.
f) Show that g holds if and when 4 terminates.

C. Example (Program out, Section IV-C3)

For the program our of Section IV-C3, we show rlout|s
where

s

0<Zu

Zwx Zu!

r .. Zv = red(Zu)!,
s 11 red(Zu) > Zv,

s holds initially since all sequences are empty. We show an
annotated program below where only the program points, fol-
lowing receipt of a message, have been annotated with r since
these are the only points where the assertion is needed.

1) Annotated Program:

{Zu = empty, Zv = empty, Zw = empty}
{Zv=red(Zu)!, Zw = Zu!: vacuously}
*[true —
{Zw=2Zu!, Zv = red(Zu)!}
u?ldu;
{Zwldu!=Zu!, du =0=Zv = red(Zu)!,
du > 0= Zv|(du-1)! = red(Zu)!
. from r we can deduce here that 0 < du}
[du=0~>{Zw|0!=Zu!, Zv = red(Zu)!}
wll
{Zw=2Zu!, Zv = red(Zu)}
Odu#0->{du>0,Zw|du! = Zu!,
Zv|[(du-1)! = red(Zu)!}
v?dv;
Zwldu!=Zu!, Zv = red(Zu)!, fromr
therefore, from precondition of this
statement, dv = (du-~1)!
and Zv = red(Zu)!}
wldu*dv
{Zw=Zu!, Zv = red(Zu)'}

>

]
{Zw=Zu!, Zv = red(Zu)!'}

MISRA AND CHANDY: PROOFS OF NETWORKS OF PROCESSES
We next have to show for every message transmission com-
mand M, {pre(M)} M {s}, i.e., we have to prove the following

four steps:

{Zv=

425

{6] and [10]. The word “trace” seems to have originated
with the work of Parnas in connection with sequential
program verification.

red(Zu)!, Zw = Zu '} u?du {red(Zu) > Zv, Zw < Zu},

{Zw|0'=Zu!, Zv = red(Zu)'} w!l {red(Zu) > Zv, Zw = Zu},
{du>0,Zwldu! = Zu!, Zv|(du-1)" = red(Zu)'} v?dv {red(Zu) > Zv, Zw = Zu},
{Zv=red(Zu)!, Zw|du' = Zu !, dv = (du-1)!} w'du*dv {red(Zu) > Zv,Zw < Zu!}. -

The proof of each one of these is straightforward using proof
rules for message transmission commands of Section VII-A.

VIII. RELATED WORK

Apt, Francez, and de Roever [1] and Levin [12] have pro-
posed techniques for proofs of communicating sequential
processes described in CSP. Both techniques associate arbi-
trary pre- and post-condition with every message transmission
command in every process. If {P} A?x {Q} has been asserted
in process B and {R} Ble {S} has been asserted in process 4
and if these two commands lead to a communication, then it
must be shown that

{Pand R} x :=¢ {Q and S}.

The proof system would be too weak if it is necessary to
prove this for every pair of commands as above. It must be
realized that certain pairs of commands cannot lead to a
communication.

Levin introduces auxiliary variables common to all processes
so that if (P and R) is false, then the pair of commands cannot
lead to a communication. It becomes necessary then in
Levin’s system to construct a noninterference proof so that
the assertions made about auxiliary variables in one process
may not be falsified in another process.

Apt, Francez, and de Roever handle this problem by intro-
ducing a global invariant (which must be shown to be an
invariant). The global invariant can then be used to eliminate
those pairs of commands that cannot lead to a communica-
tion. Our proof method differs in the following ways from
these schemes.

1) We insist upon a specification mechanism for processes
and autonomous process proofs.

2) We do not allow arbitrary pre- and post-conditions for
message transmission commands. We prove rihls for every
process & autonomously.

3) We permit no network-wide auxiliary variables or global
invariants. Every process can use its own trace as an auxiliary
variable, which by definition cannot be modified by another
process without cooperation of this process.

Keller [11] has proposed proving an invariant property of a
network by showing that the property holds initially and fol-
lowing each “firing,” i.e., following each message transmission
in our model. We also use induction on the number of mes-
sage transmissions as the basis of our proof technique; how-
ever, our emphasis is on autonomous process proofs, which for
component processes are combined to yield a network proof.

Trace is an important auxiliary variable in our proof tech-
nique; uses of “history sequence” have appeared explicitly in

rikis =r[h]s.

IX. DiscussioN

Our proof system has the following features.

A. Autonomy

A process is an independent entity much like a procedure
and therefore should have an independent specification. A
process in a network should be replaceable by another process
having the same specification. It should only be necessary to
prove an implementation by showing that it is consistent with
its specification. This approach then requires us to use the
specifications (but not the code) of the component processes
in proving a network. i

B. Hierarchy

A hierarchy of processes is constructed in the following
manner. The leaves of the hierarchy tree, i.e., the lowest
nodes, are sequential processés. The internal and external
specifications for a sequential process # are identical, i.e.,
A network of processes can be specified either
with an internal or an external specification. The internal
specification considers the network trace and may be used to
state invariant properties of the network; the external specifi-
cation restricts attention to the external trace, i.e., the external
behavior of the network viewed as a single process. This
external specification is the only specification that can be used
in proofs at the next higher level in the hierarchy. The proof
system supports the hierarchy in a natural manner.

C. Compatibility with Sequential Program Proving Techniques

The technique proposed is a natural extension of the axi-
omatic system of Hoare [7] for sequential programs. For
instance, in the absence of message communication in a pro-
cess h, h reduces to a procedure and proof of {r;p} k| {g;s}
reduces to a conventional sequential proof of {p}h {q}.
Hence, the external specification of # uses only p, ¢ in the
traditional manner, although # may be implemented by a
network of processes.

D. Limitations

One limitation of our proposed system, much like Hoare’s
axiomatic system for sequential programs, is the inability to
prove temporal properties such as eventual deadlock, or
eventual termination, etc., within the proof system directly.
We suspect that proofs of temporal properties can never be
achieved directly using only the notion of invariants; instead
a metric must be associated with the program which is shown
to decrease as the computation progresses. Examples of such

426

metrics may be found in [3], which can be used in conjunc-
tion with methods of this paper to prove absence of deadlock.

APPENDIX

DESCRIPTION AND PROOF OF sieve;
(See Sections IV-B2 anp IV-B3)

It is required to show rylsieve;|s;, where
1) r; 10 Zm; < seq;
$; 1 Zmyy &Seqy , Zprint; = empty
or Zprint; = <oddpr'ime(i)>_
Zm; = 0 = Zprint; = empty
Zmza, > 0= Zprint; = <oddprime>
2) sieve; .
m;?p; print;!p;
mp = p;
*[true »
m;lx;
*[x >mp —>mp :=mp +pl;
[x = mp —>skip
Ox <mp —>myy 1x
]
]

The proof can be accomplished by using the following in-
variants. In the following, cut(Zm;) denotes the sequence
obtained by removing all mulitples of Zm,(-1) from Zm;.

I 2 Zm; & seq;, cut{Zm;) = Zmy,, , Lprint; = <oddpr'ime(i)>,

p divides mp, mp-p <last(Zm;)

I' i x = last(Zm;), Zm; <« seq;,
p divides x = cut(Zm;) = Zmj, ,
not p divides x = cut(Zm;) = Zm;, | <x>,
Zprint; = <oddprime V>,
p divides mp, mp-p <Xx

The annotation uses [as the outer loop invariant and I’ as the
inner loop invariant.

ACKNOWLEDGMENT

The authors gratefully acknowledge the helpful comments of
Profs. S. Owicki and G. Levin. They are deeply grateful to
Prof. C. A. R. Hoare for his encouragement. Prof. D. Parnas
has kindly brought some important early work on trace to
their attention.

REFERENCES

[1] K. R. Apt, N. Francez, and W. P. de Roever, “A proof system for
communicating sequential processes,” TOPLAS, vol. 2, July
1980.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 4, JULY 1981

[2] M. Clint, “Program proving: Coroutines,” 4cta Inform., vol. 2,
1973.

[3] K. M. Chandy and J. Misra, “Deadlock absence proofs for net-

works of communicating processes,” Inform. Process. Lett.,

vol. 9, no. 4, 1974.

—, “A simple model of distributed programs based on imple-

mentation hiding and process autonomy,” SIGPLAN Notices,

July 1980.

E. W. Dijkstra, “A correctness proof for communicating pro-

cesses: A small exercise,” EWD607, The Netherlands.

D. 1. Good, R. M. Cohen, and J. Keeton-Williams, “Principles of

proving concurtent programs in GYPSY,” in Conf. Rec. 6th

Annu. ACM Symp. on Principles of Programming Lang., San

Antonio, TX, Jan. 1979.

C. A. R. Hoare, “An axiomatic basis for computer programming,”

Commun. Ass. Comput. Mach., vol. 12, 1969.

“Communicating sequential processes,” Commun. Ass.

Comput. Mach.,vol. 21, no. 8, 1978.

——, “A mode] for communicating sequential processes,” Com-

put. Lab., Oxford Univ., Dec. 1978.

J. H. Howard, “Proving monitors,” Commun. Ass. Comput.

Mach.,vol. 19, no. 5, 1976.

R. M. Keller, “Formal verification of parallel programs,”

Commun. Ass. Comput. Mach., vol. 19, no. 7, 1976.

G. M. Levin, “A proof technique for communicating sequential

processes (with an example),” TR 79-401, Dep. Comput. Sci,,

Cornell Univ., Ithaca, NY, 1979.

S. Owicki and D. Gries, “An axiomatic proof technique for

parallel programs,” Acta Inform., vol. 6, 1976.

(12}

[13]

Jayadev Misra (8°71-M’72) received the B.Tech.
degree in electrical engineering from the Indian
Institute of Technology, Kanpur, in 1969, and
the Ph.D. degree in computer science from The
Johns Hopkins University, Baltimore, MD, in
1972.

He worked for IBM, Federal System Division,
from January 1973 to August 1974. He is
currently an Associate Professor with the De-
partment of Computer Sciences, University of
Texas, Austin.

Dr. Misra is a member of the Association for Computing Machinery.

K. Mani Chandy received the B.Tech. degree
in electrical engineering from the Indian Insti-
tute of Technology, Madras, India, the M.S.
degree in electrical engineering from the Poly-
technic Institute of Brooklyn, Brooklyn, NY,
and the Ph.D. degree in operations research
from the Massachusetts Institute of Tech-
nology, Cambridge, in 1965, 1966, and 1969,
respectively.

From 1966 to 1967 he was an Associate
Engineer with Honeywell EDP and from 1969
to 1970 he worked as a Staff Member at the IBM Cambridge Scientific
Research Center. He has also been a consultant to the-Computer Sci-
ences Department, Thomas J. Watson Research Center. He is presently
Professor of Computer Sciences and Electrical Engineering, University
of Texas, Austin, and a Consultant for Information Research Associates,
Inc., Austin, TX. His current research interests include modeling of
computer systems, networks, and reliability.

Dr. Chandy is amember of the Association for Computing Machinery.

