Personal Robotics Clinic Algorithms and Applications

Joshua R. Smith

Associate Professor Computer Science & Engineering and Electrical Engineering University of Washington

TA: Vibinash Thomas

http://www.cs.washington.edu/education/courses/cse599j/12sp/

Comparing Personal Computers and Personal Robots

Visualizing Personal Robots with the PR1

Tele-operated PR1 (Personal Robot 1) from Stanford & Willow Garage

Tidy roomCare for elderlyThese illustrate application scenarios and show mechanical feasibility

How it was done: A puppet-master behind the scenes

Visualizing Personal Robots Tele-operated PR1 (Personal Robot 1) from Stanford & Willow Garage

Fetch beer

Personal Robotics Applications

Service / assistance

Fetch; Laundry; Dishwasher loading; Elder / disabled care

Transportation / mobility / logistics

Driving / delivery; Warehouse automation (e.g. Kiva)

Manufacturing / un-manufacturing

Assembly assistance; Trash / recycling sorting & disassembly

"Flexible fabrication" (beyond 3D printing, e.g. programmatic domino set up)

Entertainment & Sports

Games: Chess, Rubik's Cube

Sports: Ping pong, Pool, Hide & Seek, etc

Robotic laundry folding

Cloth Grasp Point Detection based on Multiple-View Geometric Cues with Application to Robotic Towel Folding

> Jeremy Maitin-Shepard Marco Cusumano-Towner Jinna Lei Pieter Abbeel

Department of Electrical Engineering and Computer Science University of California, Berkeley

International Conference on Robotics and Automation, 2010

Beer fetching

Bio Fetch

Biological Fetch: Helper Monkeys cost \$35K and take 5 years to train

Rubik's Cube

PR2 SOLVING A RUBIK'S CUBE

Chris Burbridge Lorenzo Riano

University of Ulster Intelligent Systems Research Centre

A robot that "smells its food" by sensing Electric Fields

Robot, Feed Thyself: Plugging In to Unmodified Electrical Outlets by Sensing Emitted AC Electric Fields, ICRA-2010. B. Mayton, L. LeGrand, J.R. Smith

Gambit: A Chess playing automaton

Robotic Capabilities

Robotic capabilities

Navigation

Manipulation

Walking

Jumping

Social interaction

Navigation

Stanford Cart 1979 (video speed: 200 x realtime)

CMU Boss 2007 (video speed: 1 x realtime)

Manipulation

Pile manipulation: Singulation of unknown objects

Walking (Big Dog)

Jumping

Social Interaction

Social Interaction

Social Interaction

Next: Chess

Robotic Research Disciplines

Research disciplines

Sensing

Perception

Control

Planning

2007: Velodyne laser rangefinder

Breakthrough: direct measurement of 3D information Enabler for pavidation

Electric Field Sensing

E-Field sensing is used by fish but not by humansFish generates & detects a weak electric field (green lines)Objects (red) change detected electric field (lighter green line)

Black ghost knife fish (*Apteronotus albifrons*) 1KHz continuous wave

Fish tail curling behavior increases image contrast

W. Heiligenberg. Studies of Brain Function, Vol. 1:

Principles of Electrolocation and Jamming

New Sensors Electric Field Pretouch

An Electric Field Pretouch System for Grasping and Co-Manipulation, ICRA-2010. B. Mayton, L. LeGrand, J.R. Smith

Taking object from person, from table

Seashell effect pretouch

APPLICATION I:

Reactive Grasping of Compliant Objects

Seashell Effect Pretouch | LT Jiang, Smith

Seashell Effect Pretouch Sensor Design Applications Summary

Acoustic Theory Sensor Design on PR2 Sensor Characterization

> ৩ ৭ (10 / 18

Sensor Design on PR2

Sensor size on fingertips: 5mm(diameter) x 8mm(length)

Introduction Seashell Effect Pretouch Sensor Design Applications Summary

Acoustic Theory Sensor Design on PR2 Sensor Characterization

Sensor Characterization: Performance

The box and whisker plot of 1000 estimated resonance frequencies at 1-10 mm.

Application Parameters Frequency: 9500 Hz Distance: 3 mm

Seashell effect pretouch & grasp planning

APPLICATION II:

Pretouch-Assisted Grasp Planning

Given the pointcloud from camera, the pretouch sensor will add additional points.

The concatenated pointcloud will be used for grasp planning.

Seashell Effect Pretouch | LT Jiang, Smith

Algorithm focus in this course: planning

Path planning Dijkstra **A*** RRT Laplace Arm planning **Forward Kinematics Inverse kinematics** Direct; Iterative

Other possible topics

path smoothing collision detection algorithms grasping

Potential novel research --- final project?

Apply Laplace planners to arm planning Hybridize RRT & Laplace planning PR2 Mobile Manipulation planning move PR2 base, torso, and arms together