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Abstract—We present the hardware design, software archi-
tecture, and core algorithms of HERB 2.0, a bimanual mobile
manipulator developed at the Personal Robotics Lab at Carnegie
Mellon University. We have developed HERB 2.0 to perform
useful tasks for and with people in human environments. We
exploit two key paradigms in human environments, that they
have structure that a robot can learn, adapt and exploit, and
that they demand general-purpose capability in robotic systems.
In this paper, we reveal some of the structure present in everyday
environments that we have been able to harness for manipulation
and interaction, comment on the particular challenges on work-
ing in human spaces, and describe some of our lessons learned
from extensive testing in kitchens and offices with our integrated
platform.

I. INTRODUCTION

Robots perform remarkable dexterous tasks routinely in
factories. They assemble a wide range of products, from cars to
microprocessors, often with super-human precision and speed.
As a consequence, factories are filled with robots. The lack
of abundance of robots in our homes might seem puzzling at
first: surely, something capable of assembling a car, a task that
few of us can claim to be capable of performing, should find
the task of clearing a dining table after a meal, a task that
almost all of us can claim to be capable of performing, trivial.

In trying to explain this paradox, researchers often claim
that factories are structured whereas our homes, with their
clutter and messiness, are unstructured. But that is perhaps
oversimplifying: a bin of nuts and bolts in a car assembly
plant or the inside of a chassis are perhaps as cluttered (if not
more) than the average kitchen in our homes. Perhaps a deeper
difference is that factories are structured for robots whereas
our homes are structured for humans. One might argue that we
might be as confused in a car factory, as a factory robot is in
our kitchen. But, given time, we adapt to the structure that is
presented to us. Likewise, we would like robots in out homes
to understand, adapt to, and eventually utilize the structure that
is present in our homes.

Another key difference is generality. A car factory is mas-
sive, with hundreds of robots spread over hundreds of square
feet, each performing a few specific tasks. In contrast, a car

Fig. 1. HERB 2.0: A bimanual mobile manipulator developed at the Personal
Robotics Lab at Carnegie Mellon University

mechanic’s workshop is small, with a few skilled mechanics
spread over a few square feet, each performing a multitude
of tasks. The confines of a human environment, built for a
general-purpose manipulator like the human, compel robots in
such environments to also strive to be general purpose: there
just isn’t enough space for hundreds of specific-purpose robots.

At the Personal Robotics Lab at Carnegie Mellon University,
we are developing algorithms to enable robots to perform
useful tasks for and with people in human environments. To
this end, we have designed and built a series of increasingly
capable mobile manipulators starting from the BUSBOY [1]:
a mobile base coordinating with a fixed arm, HERB [2]: an
integrated mobile base and arm, to the current version HERB
2.0: a bimanual mobile manipulator.

The two paradigms, of structure and generality, resonate
through all of our decisions, from the design of the hardware
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(Section III) and software architecture (Section IV) to the
algorithms for cognition (Section V), planning (Section VI,
VII, VIII), perception (Section X), navigation (Section XI),
and interaction (Section IX).

In the sections that follow, we will reveal the structure
present in everyday environments that we have been able
to harness for manipulation and interaction, comment on
the particular challenges on working in human spaces, and
describe some of our lessons learned from extensive testing in
kitchens and offices with our integrated platform.

II. A BRIEF HISTORY OF MOBILE MANIPULATION

We build upon a long history of integrated mobile manip-
ulation systems that combine navigation, perception, motion
planning, and learning. In this section, we will briefly trace
out some of that history. The sections that follow will each
have their own background work specific to their subtopic.

SHAKEY [3] was possibly the first (well-documented) mo-
bile manipulator. Developed by SRI from 1966–72, SHAKEY
was equipped with an onboard SDS-940 computer, a TV
camera, and other sensors atop a wheeled base. Developed
primarily as a testbed for AI planning, SHAKEY navigated
autonomously through corridors and pushed large boxes that
were in its way using its base as a manipulator.

FREDDY II [4] was being developed at the University of
Edinburgh at about the same time. It was made up of a large
robot arm with fixed to an overhead gantry, with a binocular
vision system for perception. While SHAKEY manipulated
without an arm, FREDDY II navigated without a wheeled base.
Its world consisted of a table that could be moved in two
directions, giving FREDDY II the impression of motion. This
was a truly remarkable robot, able to assemble wooden models
using vision to identify and locate the parts – given a jumbled
heap of toy wooden car and boat pieces it could assemble both
in about 16 hours using a parallel gripper and single camera.
FREDDY II asked and often answered some of the fundamental
questions that still plague modern mobile manipulators: of
perception and manipulation in clutter, and of force-controlled
assembly.

HANDEY [5], [6] was developed in the 80s at MIT with the
goal of performing general pick-and-place tasks over a very
broad range of objects. Unlike previous robots, that posed ma-
nipulation as a blocks-world style AI problem, HANDEY posed
manipulation as geometric search, striving to find collision-
free paths in the robot’s configuration space. HANDEY pro-
duced numerous advances, including geometry-based object
detection, grasp tables, regrasping, and the concept of config-
uration spaces as a means to abstract and generalize algorithms
across robot morphology and kinematics, a concept upon
which our motion planning algorithms are based on.

Several other platforms, like the JPL CART [7], ROMEO
AND JULIET [8], and HILARE 2BIS [9], populate the history
of mobile manipulation.

Humanoid robots, with manipulators atop legged bases,
provide a drastic design departure from the classic wheeled-
base mobile manipulators. While they provide greater rough-
terrain locomotion dexterity, humanoids often have to deal

with several additional constraints like balance, walking, and
power density. Honda’s ASIMO robots [10], starting with E0
in 1986, and the H6 [11], H7 [12], and the HRP series
of robots [13]–[15] developed in Japan, have demonstrated
remarkable one- and two-armed mobile manipulation.

HERB 2.0 joins a modern list of mobile manipulators,
including the PR2 [16], JUSTIN [17], TUMROSIE [18], EL-
E [19], the STAIR project [20], among many others. The
design of these robots still echoes their illustrious predeces-
sors: wheeled bases with capable manipulators atop them.
The advances in sensor and hardware designs, computing
capability, and algorithms, some of which we shall describe
in the following sections, have enabled these robots to often
produce super-human capability in mobile manipulation.

Like most histories, this one is also both personal and
incomplete. Mobile manipulators have a rich history, from the
60s, and have demonstrated great capability and promise.

III. HARDWARE DESIGN

At the Personal Robotics Lab we require a platform that
can operate synergistically with humans to perform tasks in
the home environment. The design of our robot HERB 2.0,
therefore, reflects our research interest in human-aware two-
arm manipulation of unstructured environments. HERB 2.0’s
hardware allows it to navigate indoors for hours at a time,
sense its surroundings, and manipulate objects of interest for
or with human partners, with minimal reliance on supporting
infrastructure.

A. Actuation

HERB 2.0’s base is comprised of a Segway RMP that
operates in “tractor” mode, with a rear caster installed for
passive balancing. The placement of components on HERB 2.0
was carefully chosen to shift the center of gravity rearward so
that weight is maintained on the caster even when suddenly
stopping at the software-limited maximum deceleration. The
Segway was chosen because of its high payload capacity,
smooth velocity control, reliable operation, low noise, conve-
nient USB interface, and open-source host interface software.

HERB 2.0 manipulates its environment with a pair of Barrett
7-DOF WAM arms and Barrett hands. The WAM arms have
proven themselves to be great choices for working alongside
humans, due to their comparatively low mass, backdriveability,
and hardware-implemented safety system. Additionally, we
have further enhanced their safety by sensing and reacting
to position disturbances that indicate physical collisions, and
by keeping the operating speeds to a reasonable level so that
humans are not surprised by sudden motions. Because the
arms are commanded with an open protocol that requires no
proprietary drivers, we have been able to write our own host-
based closed-loop control software that can switch control laws
according to application and sensory input.

The configuration of the two arms with respect to the
base was chosen after careful consideration of a number
of alternatives. With the two arm bases mounted side-by-
side facing forward, HERB 2.0 maximizes the workspace
in which both hands can reach the same point while still
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Fig. 2. Rear, side, and frontal renderings of the HERB 2.0 design, and the completed robot.

remaining narrow enough to fit through a 28” wide doorway.
The mounting height allows HERB 2.0 to grasp objects from
both the floor and from high shelves in overhead cabinets.
Finally, by making a simple modification to the first joint on
each arm, we were able to locate the largest dead zone of the
configuration space to an area which would least affect our
primary task, the manipulation of tabletop objects.

B. Sensors

An array of three miniature laser rangefinders mounted just
above ground level gives HERB 2.0 360-degree perception of
obstacles that pose a hazard to navigation, as well as provide
readings for a planned self-docking capability to be developed
in the future. A fourth higher-power laser is mounted on a
custom-built spinning base to produce full 3D point clouds
of the surrounding environment. By directing the spin axis
towards the primary workspace, the laser generates a point
cloud with a higher density of points right in front of HERB
2.0, thereby maximizing the utility of the data for our most
common tasks. The spinning mechanism allows for variable
spin rates in order to control the overall cloud resolution, and
features dedicated hardware to capture the precise rotation
angle for each laser scan so that the 3D points can be
accurately assembled. The resulting point clouds are used
primarly by the arm-motion planning software (Section VI) to
avoid collisions with unexpected obstacles in the work area,
such as nearby people and moveable furniture.

HERB 2.0 features three camera-based sensors for object
recognition and localization. HERB 2.0 has a monochrome
gigabit-ethernet camera for recognizing household objects in
the workspace (Section X). This particular camera model was
chosen for its high sensitivity, so that even when restricted to
the lighting conditions present in typical indoor environments
we can take short exposures in order to minimize motion
blur. The initial design of HERB 2.0 fixed the camera to
a stationary mast so that it was pointed forward and down,
but such a configuration requires HERB 2.0 to move its base
in order to pan to areas outside of its field of view. The
next version of HERB 2.0 will include a pan/tilt head so
that HERB 2.0 can attain a larger perception range while
the base remains stationary. HERB 2.0 also has an upward-
facing infrared camera for localizing the base with respect to

ceiling-mounted retro-reflective markers. The self-contained
unit includes infrared LEDS for lighting the markers, and
features an overall resolution of 2cm position and 10 degree
rotation. Finally, HERB 2.0 uses a popular RGB-D gaming
camera to track humans in the environment. The RGB-D
camera is located offboard to get a good view of the scene.

Additionally, HERB 2.0 makes extensive use of the sensors
built into the Segway base and the WAM arms and hands. The
Segway odometry is synthesized with the StarGazer output in
order to provide a pose estimate that outperforms either sensor
working alone. The WAM is equipped with both joint position
sensors and an end-effector force/torque sensor that detect
disturbances applied by the environment, while the fingers on
the Barrett hands feature position, strain, and tactile sensors
that produce critical feedback while manipulating objects.

C. Computing and Networking

HERB 2.0’s computing configuration allows it to perform
all essential processing onboard, reducing its dependence on
the wireless network or offboard computers for the bulk of its
tasks. Three high-performance mobile workstations (“laptop”
form factor) with hyperthreaded quad-core processors make
up the primary compute capacity. Each machine includes a
high-performance GPU that is capable of running our vision-
processing system (Section X), and a large solid-state drive
for fast throughput with low power consumption.

Although the laptop configuration brings with it unnecessary
peripherals (we make no use of the LCD screens, keyboards,
or media drives), a comparison against both desktop sys-
tem boards and industrial embedded-system processor boards
yielded laptops the clear winner. Laptop systems typically have
a much higher ratio of computing performance to consumed
power, feature heatpipe cooling systems that cool both the
CPU and GPU in a single compact unit, and often have a wider
range of peripheral interfaces (such as IEEE-1394) integrated
into the motherboard. We have adapted our laptops to HERB
2.0’s needs by adding remote power buttons to the rear panel,
so that the laptop lids need never be opened, and by removing
the internal lithium-ion batteries so that we have more direct
control over the power drawn from HERB 2.0’s DC supply.

HERB 2.0 also uses an ARM-based embedded computer to
interface with low-level hardware onboard. The unit features a
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Xilinx FPGA along with a generous assortment of analog and
digital I/O lines and a few H-bridge motor controllers. We
currently use it to control the spinning laser unit, and have
plans to use it to perform on/off control of the onboard power
loads and to drive indicator lights to communicate high-level
intent to the user.

The three laptops, the embedded computer, and the ethernet
camera are all tied together with a gigabit-ethernet switch for
a fast onboard network, with a connection to a wireless bridge
for communication with offboard hosts. The use of a wireless
bridge (as opposed to a wireless router) makes all hosts, both
onboard and offboard, visible on the same network without
any network address translation, which greatly simplifies de-
velopment and testing.

D. Power

HERB 2.0’s onboard power system allows it to operate un-
tethered for hours at a time, even when fully active. The system
produces 48, 24, 19.5, 12, 7.4, and 5 volts using Vicor DC/DC
converters supplied by a pair of rechargeable ModEnergy
lithium-ion battery packs. The converters are mounted to a
heatsink whose size was chosen so that convective airflow pro-
duces enough passive cooling during normal operation, while
temperature-triggered variable-speed fans augment the cooling
as required during peak consumption periods. Recharging
occurs at twice the discharge rate, so HERB 2.0 can operate
indefinitely at a 67% duty cycle. The battery packs offer a
serial interface for monitoring charge level and current flow,
and 7-segment LED displays mounted on the rear panel give
the user a quick indication of battery voltage and current draw.
A bank of software-controlled relays provide several contacts
for each voltage level, so that individual loads can be turned
on or off through software control. The power system was
designed for hot-plug recharging, which is currently provided
by a manually-connected tether and plug but which will be
replaced by a docking system for autonomous recharging.

E. Lessons learned

After designing and using three instantiations of HERB, we
can offer some guidelines for building a reliable platform
for productive robotics research. First, make the hardware
interface easy for non-experts to understand, so that everyone
from regular users to visiting researchers feel comfortable
using the robot and are not likely to damage it through ig-
norance. That means extending power switches and peripheral
connections so that components do not need to be physically
removed to make connections, and documenting how to start
and stop the various onboard systems. Second, minimize
the need for future upgrades but still be prepared for them.
Each components should be carefully selected and proven
offboard before committing to it, so that its utility won’t be
outgrown quickly. Because of the nature of robotics research,
however, expect that better hardware (sensors in particular)
will be available down the road, and make provisions for
mounting and powering accessories beyond the initial set.
Finally, make an effort at every turn to keep power consump-
tion low. Lower consumption results in reduced conversion

losses, reduced cooling requirements, and reduced battery
requirements, thereby eliminating excess bulk and shortening
recharge times.

IV. SYSTEM ARCHITECTURE

A key challenge for robot systems in the home is to
produce safe goal-driven behavior in a changing, uncertain and
dynamic environment. A complex system like HERB 2.0, that
has a host of sensors, algorithms, and actuators, must address
issues ranging from software robustness (sensors failing, pro-
cesses dying, communication failure) to problems that emerge
from inaccurate or unknown models of the physical world
(collisions, phantom objects, sensor uncertainty). To address
this challenge, HERB 2.0 uses a software architecture loosely
based on the sense-plan-act model to provide safe and rich
interactions with humans and the world.

A. Abstract components

Figure 3 shows the interaction between the different com-
ponents of our architecture. We gather information about the
world which is composed of fixed and dynamic objects, agents
like humans and other robots, and semantics like HERB 2.0’s
location in the home. We gather data from a wide range
of sensors including high-definition cameras, the Microsoft
Kinect, lasers scanners, a localization system (StarGazer),
Segway encoders, as well as HERB 2.0’s joint encoders and
force sensors. Analysis of the sensor data over time allows us
to perceive and model both objects and actions in the world.

HERB 2.0 has three classes of plan components that can
make decisions: safety, agent, and teleop. Safety components
ensure that HERB 2.0 does not harm humans, the environment,
or itself. Some examples of safety components include the
limitation of forces that the arm is allowed to exert and the
limitation of joint velocities. Safety limits cannot be overrid-
den by other components. Agent components try to accomplish
goals based on HERB 2.0’s perception of the world. These
goals include manipulating objects in the world, expressing via
gestures, and physically interacting with humans. Much of the
agent programming deals with edge cases where the robot tries
to correct for perception errors or system failures (Section V).
The teleop components are human interfaces where the human
can explicitly tell the robot what to do, both at a low level like
moving single joints or at a high level like grasping an object.
Teleop components override agents but cannot override safety
components.

Finally, the act components perform actions to accomplish
the tasks commanded by the plan components. This includes
planning trajectories and base motion, servoing the motors,
making sounds, and interacting with other computer systems.
In addition, each act component advertises to the user inter-
faces the subset of actions it is capable of performing at that
given time. For example, if HERB 2.0 is holding an object and
moves close to a recycling bin, the action planner advertises
the recycle action.

There are some interesting implications to using this system
architecture. First, because all actions must go through the
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Fig. 3. (Left) HERB 2.0 system architecture. (Right) Excerpt from the Intel Open House 2010 state machine.

safety components before and during execution, it is impos-
sible for higher level components to execute unsafe actions.
Second, because of the modularity, the designers can decide
at which level the decisions are made. For example, suppose
the agent commands the action planner to pick up a full coffee
mug. Should the agent also tell the action planner not to tip
the mug, should the planner know to not tip the mug from its
own information, or should the modeled mug object have a
property of not being tippable as identified by the perception
system? In this example, HERB 2.0’s action planner decides
to keep the mug upright based on its own knowledge that the
mug may have liquid in it, however, this decision could easily
be made by the agent or the perception system without loss of
functionality. Third, due to the parallel and modular properties
of this system architecture, the designer has control over what
kind and how much information each component shares with
the other components. One can see the parallels between
these system properties and those of software architecture. It
would be interesting to see if the same design principles used
in software architecture can be used in the design of robot
systems and their interactions.

B. Implementation

HERB 2.0’s software consists of several nodes that operate
in parallel and communicate to one another using the Robot
Operating System, ROS [21]. ROS provides a framework for
inter-node communication along with an online database of
open source nodes. HERB 2.0’s nodes are launched over ssh
and VNC from an offboard computer. ROS offers modularity
and extensibility and our nodes are written in C++, Python,
Lua, and Lisp. ROS has become more stable over the years
and some of our nodes, in particular the sensor drivers and
visualization tools, are from community-created open-source
ROS repositories. The core of HERB 2.0’s intelligence —
perception, planning, control, behavior engine, and navigation
— was developed in our lab. The following sections discuss
each of these nodes in greater detail

C. Lessons learned

Robot systems, and software systems in particular, are in
a state of constant flux. We have added and moved around

sensors, added an arm, reconfigured lasers, and are constantly
updating the software. Core software engineering concepts, of
modularity and extensibility, become all the more important
when dealing with a system that physically interacts with the
world. We have also found the ability to quickly prototype
nodes and swap them in at runtime to be of great use.

V. BEHAVIOR ENGINE

One of the challenges of performing complex tasks in the
home is to implement a system that allows for the description
of behavior the robot should perform in an easy and extensible
way. Robot behavior specific languages like Colbert [22] and
XABSL [23] have been proposed in the past which allow
a concise description of robot behavior. But these languages
often impose restrictions in terms of expressiveness. To accom-
plish both, brevity and clarity in the robot behavior description
on the one hand and providing a full programming environ-
ment that avoids restrictions in expressiveness and allows for
flexibility on the other hand, we proposed the Behavior Engine
(BE). It uses the formalism of hybrid state machines (HSM)
to model robot behavior and separates the overall behavior in
three layers. It is implemented in the interpreted programming
language Lua [24]. In the following we will briefly introduce
how behavior is modeled and separated into layers, and how
we overcome typical problems of state machines. We describe
its implementation on HERB 2.0, the particular challenges
encountered, and how it fits into the ROS ecosystem. We
conclude with the description of an all-day demonstration of
the robot, showing the reliability of the system and the lessons
learned in this process

A. Modeling Robot Behavior

HSMs are directed graphs where the nodes represent states,
and edges are transitions among the states. One particular
state is the currently active state. A state represents, for
example, the execution of an action, perception monitoring,
waiting for an event, or a combination of many of these.
The transitions are defined as three-tuples of originating state,
target state, and a jump condition, which is a boolean function
or predicate. The jump conditions of outgoing transitions of
the active state are evaluated at about 30 Hz. If and when a
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jump condition evaluates to true, i.e. it fires, the transition
is followed. Transitions are used, for example, to react to
outcomes of actions, possibly specific to the kind of an error
that occurred, or to react to certain perceptions or events.
If multiple jump conditions fire, only the first transition in
the order of definition is followed. More elaborate conflict
resolution methods could be implemented if the need arose.
Another valuable property of HSMs is that they define a set
of variables that can be used to store arbitrary information not
only intrinsic to a state, but global for the state machine.

The overall behavior of the robot is separated into three
layers. At the lowest level are real-time, hardware driving,
actuator instructing, and perception processing components.
At the top is the agent program that makes strategic decisions
and composes smaller behavior entities to achieve a set of
goals. In between these layers is the Behavior Engine, a system
for developing, executing, and monitoring reactive behavior
entities called skills. It serves as a plumbing layer to connect
the agent with the low-level system and to prune peculiarities
to keep the action interface simple for the agent.

Each skill is encapsulated in an evaluation function with pa-
rameters, which are assigned to the internal variables when the
HSM is started. For example, goto{place="kitchen"}
could invoke a skill which composes a proper series of
commands for the low-level components to move the robot
to the kitchen. To support non-blocking operation, execution
functions are defined for interleaved invocation. Initially, the
execution function will return RUNNING as its status. After
some time, the return value will switch to either FINAL or
FAILED, depending on whether the skill execution succeeded
or failed. The interface between the agent and the reactive
layer is through a set of invocation channels. For each channel,
a skill string composed of execution functions is evaluated and
the result value returned in each cycle.

Two key aspects allow for overcoming the typical problem
of a vastly increasing number of states for a state machine
based approach. First, the separation of the behavior into
layers guides a separation of the overall behavior into smaller
entities. From the top-level agent, the complexity of the HSMs
of the individual skills is hidden, because the execution func-
tions are the only interface. Therefore, these state machines
need not be a part of the overall behavior state machine.
Additionally, this fosters reuse of skills and composition into
more elaborate behaviors. Second, the set of variables allows
for keeping arbitrary data and additional state information
outside of the classical notion of state machines which keeps
this intrinsic to a state. This pragmatic approach therefore
introduces specific side effects which can lead to a drastic
reduction of the required state space.

B. Implementation on HERB 2.0

The Behavior Engine was originally used for humanoid and
wheeled soccer robots and based on the Fawkes robot software
framework [25]. For HERB 2.0, the BE has been ported
to the ROS robot software system [21], which especially
meant providing a Lua client library for ROS and coping
with a different middleware. We have developed roslua, a

client library written in Lua for ROS1. A client library allows
communicating and interacting with other ROS nodes and is
specific to a programming language.

Several advantages of Lua made it the programming lan-
guage of choice for the BE. In particular, its powerful central
table data structure allows to emphasize the description of
behavior over programming it. The table constructor syntax
was inspired by BibTeX [26], which allows to provide a
syntax for the definition of behavior that goes without a large
number of explicit function calls as required, for example,
in SMACH [27]. This way we reach close to the clarity of
domain-specific languages, but without sacrificing the abilities
a complete programming environment provides.

To invoke basic actions, ROS’ actionlib is used. It uses
topic communication to invoke, monitor, and possibly preempt
actions. In the BE, this is used for communication between the
mid-level reactive system and the high-level agent as well as
to invoke lower-level actions. We implemented actionlib lua
to interact with other nodes from Lua2.

The BE was adapted to the specific challenges for domestic
service robots in general and HERB in particular, for example
dealing with two-armed manipulation and action concurrency.
We have also started working on improving the behavior
robustness by providing fail-over mechanisms whenever pos-
sible, and determining situations when human assistance was
necessary.

C. Lessons Learned

In September 2010 we demonstrated HERB 2.0 at the Intel
Labs Pittsburgh Open House. The robot’s task was to pickup a
full bottle from a counter, take it to the audience, and hand it
over to a human. If no human would take the bottle after a little
while it was placed on a nearby table. The robot then requested
empty bottles to take back. It then drove back to the counter.
If it got handed a bottle, it weighed it to determine if the
bottle was actually empty or if it was full. Empty bottles were
dropped into a recycling bin, while full bottles were put back
on the counter. The robot continuously performed this task for
about six hours. Human assistance was surprisingly infrequent
(about 2-3 times an hour) and almost always requested for
by the robot because it realized that it was in an unexpected
or dangerous situation. During the operation, visitors would
frequently pass the way of the robot while driving, or the
arm could be hold back to demonstrate its compliant motion.
Some software components were under active development,
and therefore recovery from certain conditions required some
effort. For example, there could be a discrepancy between the
robot’s belief and the actual arm poses. This could lead to
the assumption that the robot was in collision with an object.
Time constraints during the development of the task made it
infeasible to come up with a recovery strategy for such a case.

These uncertainties, problems, and current limitations
needed to be reflected in the robot’s behavior. In the worst
case, for example if posture belief indicated a collision, the
robot would go into a dialog mode, in which it would request

1Source code and documentation at http://www.ros.org/wiki/roslua
2BE, actionlib lua and demo at http://www.ros.org/wiki/behavior engine

http://www.ros.org/wiki/roslua
http://www.ros.org/wiki/behavior_engine
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help from a human operator. The arm was set into a gravity
compensation mode in which the operator could move it
freely. Once the collision was resolved, a button on the robot
was pressed and it would start over. Nowadays, much more
fine grained recovery strategies have been implemented. For
example, if the pose estimation of objects is slightly off, the
robot can now resolve many collision situations by itself.

An excerpt from the state machine is shown in Fig.3(Right).
It covers the placing of the bottle on the table if it was not
taken, and on success turning back to the audience and taking
an empty bottle. In case moving the arm to its initial position
fails, it relaxes both arms and requests help. The upper right
transition shows how specific errors can be determined by
analyzing an error string.

We started off implementing the behavior by creating the
state machines for the individual skills, the basic abilities of the
robot. For certain classes of actions like manipulation, which
required interaction with a specific submodule in a unified
way, we created an auto-generator which would create the
state machines on the fly. Others were created manually. The
skills were then individually tested and debugged. Eventually
the agent state machine was created, composing the skills to
accomplish the overall task. Some time was required to define
proper fail-over behaviors in the case other behaviors failed,
and to get the interaction of skills right.

D. Outlook

We have demonstrated that the system is capable of produc-
ing robust and stable robot behavior for an extended period of
time. By analyzing the system state, we can request operator
assistance if required. Although we can recover from an
increasing number of failures with the existing tools, we strive
for a more general description of error conditions, recovery,
and resuming of the original task. We have yet to see how far
we can scale the system in terms of comprehensibility of the
state graph. We assume that we can create more complex skills
and to have a stronger emphasis on hierarchically structured
state machine (which is already supported but not used, yet) to
slow down the growth of the behavior description complexity.

VI. MANIPULATION PLANNING

Motion planning for a mobile manipulator like HERB 2.0
is difficult because of the large configuration space of the
arms and the constraints imposed on the robot’s motion.
Some of these constraints arise from the torque limits of
the robot or the necessity of avoiding collision with the
environment. However, some of the most common constraints
in manipulation planning involve the pose of a robot’s end-
effector. These constraints arise in tasks such as reaching to
grasp an object, carrying a cup of coffee, or opening a door.
As a result, researchers have developed several algorithms
capable of planning with end-effector pose constraints [30]–
[35]. Though often able to solve the problem at hand, these
algorithms can be either inefficient [30], probabilistically in-
complete [31]–[33], or rely on pose constraint representations
that are difficult to generalize [34], [35].

We have developed a manipulation planning framework [28]
that allows robots to plan in the presence of constraints on end-
effector pose, as well as others. Our framework has three main
components: constraint representation, constraint-satisfaction
strategies, and a sampling-based approach to planning. These
three components come together to create an efficient and
probabilistically-complete manipulation planning algorithm
called the Constrained BiDirectional RRT (CBiRRT2). The
underpinning of our framework for pose-related constraints is
our Task Space Regions (TSRs) representation.

TSRs describe volumes of permissible end-effector pose for
a given task. For instance, for a reaching-to-grasp task TSRs
can be used to define the set of end-effector poses that result
in stable grasps. For picking up a cup of water, TSRs can
define the set of poses in which the water does not spill. TSRs
are intuitive to specify, can be efficiently sampled, and the
distance to a TSR can be evaluated very quickly, making them
ideal for sampling-based planning. Most importantly, TSRs
are a general representation of pose constraints that can fully
describe many practical tasks. For more complex tasks, such
as manipulating articulated linkages like doors, TSRs can be
chained together to create more complex end-effector pose
constraints [36]. TSRs can also be used to construct plans
that are guaranteed to succeed despite uncertainty in the pose
of an object [37].

Our constrained manipulation planning framework also al-
lows planning with multiple simultaneous constraints. For
instance, collision and torque constraints can be included along
with multiple constraints on end-effector pose [38]. Closed-
chain kinematics constraints can also be included as a relation
between end-effector pose constraints without requiring spe-
cialized projection operators [39] or sampling algorithms [40].

We have applied our framework to a wide range of prob-
lems, both in simulation and in the real world (Figure 4).
These problems include grasping in cluttered environments,
lifting heavy objects, two-armed manipulation, and opening
doors, to name a few.

These examples demonstrate our framework’s practicality,
but it is also important to understand the theoretical prop-
erties of manipulation planning. Specifically, we would like
to understand whether various sampling methods are able
to fully explore the set of feasible configurations. To this
end, we provided a proof for the probabilistic completeness
of our planning method when planning with constraints on
end-effector pose [41]. The proof shows that, given enough
time, no part of the constraint manifold corresponding to
a pose constraint will be left unexplored, regardless of the
dimensionality of the pose constraint. This proof applies to
CBiRRT2 as well as other approaches [30], [42], whose
probabilistic completeness was previously undetermined.

A. Lessons learned

One criticism of TSRs is that the constraint representation
may not be sufficiently rich. For instance, some modifications
to TSR Chains are necessary to accommodate constraints
where degrees of freedom are coupled (as with screw con-
straints). Indeed, TSRs and TSR Chains cannot capture every
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Fig. 4. HERB 2.0 and HERB 2.0 2.0 executing paths planned by our constrained manipulation planning framework. Images taken from [28] and [29].

conceivable constraint, nor are they intended to. Instead,
these representations attempt to straddle the trade-off between
practicality and expressiveness. TSRs have proven sufficient
for solving a wide range of real-world manipulation problems
while still remaining relatively simple and efficient to use in
a sampling-based planner. While a more expressive represen-
tation is surely possible, we have yet to find one that is as
straightforward to specify and as convenient for sampling-
based planning.

We also found that, while it was fairly straightforward
to generate TSRs for many tasks, the process became quite
tedious. Thus it would be interesting to develop a system that
could automatically generate the constraints corresponding to
a given task. We have investigated automatically forming TSRs
for grasping tasks by sampling over the space of stable grasps,
clustering the grasps, and fitting TSRs to these clusters [43].
To generalize to object placement tasks, we would need to
develop a different method. For instance, could a robot look
at a scene and determine all the areas where a given object can
be placed? Such a task would require understanding where the
object could be placed (through grounding the idea of placing
geometrically) and also taking into account user preferences
for where objects should be placed.

VII. PLANNING UNDER CLUTTER AND UNCERTAINTY

Robotic manipulation systems suffer from two main prob-
lems in unstructured human environments: uncertainty and
clutter. Consider the task of cleaning a dining table. In such a
task the robot needs to detect the objects on the table, figure
out where they are, move its arm to reach the goal object,
and grasp it to move it away. If there is significant sensor
uncertainty, the hand could miss the goal object, or worse,
collide with it in an uncontrolled way. Clutter multiplies this
problem. Even with perfect sensing, it might be impossible
for the hand to wrap around the object for a good grasp. With
both clutter and uncertainty, the options for a direct grasp are
even more restricted, and often impossible.

We address the problems for manipulation in such a context.
Two approaches we have taken are:

• Using the mechanics of pushing to provably funnel an
object into a stable grasp, despite high uncertainty and
clutter. We call this push-grasping.

• Rearranging clutter around the primary task with the use
of motion primitives such as pushing, sliding, sweeping,
and picking up.

A. Push-grasping

A push-grasp aims to grasp an object by executing a pushing
action and then closing the fingers [44]. We present an example
push-grasp in Fig.5(Top). Here, the robot sweeps a region over
the table during which the bottle rolls into its hand, before
closing the fingers. The large swept area ensures that the bottle
is grasped even if its position is estimated with some error. The
push also moves the bottle away from the nearby box, making
it possible to wrap the hand around it, which would not have
been possible in its original location.

The robot must predict the consequences of the physical
interaction to find the right parameters of a push-grasp in a
given scene. For this purpose, we introduce the concept of
a capture region, the set of object poses such that a push-
grasp successfully grasps it. The concept of capture region
is similar to the preimages in the preimage backchaining
approach [46]. We compute capture regions for push-grasps
using a quasi-static analysis of the mechanics of pushing [47]
and a simulation based on this analysis. We show how such
a precomputed capture region can be used to efficiently and
accurately find the minimum pushing distance needed to grasp
an object at a certain pose. Then, given a scene, we use this
formalization to search over different parametrizations of a
push-grasp, to find collision-free plans.

Our key contribution is the integration of a planning system
based on task mechanics to the geometric planners tradition-
ally used in grasping. We enhance the geometric planners
by enabling the robot to interact with the world according
to physical laws, when needed. Our planner is able to adapt
to different levels of uncertainty and clutter, producing direct
grasps when the uncertainty and clutter are below a certain
level.

B. Rearranging clutter

Tasks is human environments may require rearrangement.
Imagine reaching into the fridge to pull out the milk jug.
It is buried at the back of the fridge. You immediately start
rearranging content — you push the large heavy casserole out
of the way, you carefully pick up the fragile crate of eggs and
move it to a different rack, but along the way you push the
box of leftovers to the corner with your elbow.

We developed an open-loop planner that rearranges the
clutter around a goal object [45]. This requires manipulating
multiple objects in the scene. The planner decides which
objects to move and the order to move them, decides where to
move them, chooses the manipulation actions to use on these
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Fig. 5. (Top) An example push-grasp of an object in contact with the surrounding clutter. Image taken from [44]. (Bottom) An example rearrangement
plan. The robot pushes the large ungraspable box out of the way before retrieving the goal object. Image taken from [45].

objects, and accounts for the uncertainty in the environment
all through this process. One example scene is presented in
Fig.5(Bottom). In this scene the robot’s primary task is to
grasp the can buried inside the shelf. The planner pushes the
large ungraspable box to the side. This creates the space it
then uses to grasp the primary goal object.

Our planner uses different non-prehensile manipulation
primitives such as pushing, sliding, sweeping. The conse-
quences of actions are derived from the mechanics of pushing
and are provably conservative. Since our planner uses non-
prehensile actions, it generates plans where an ordinary pick-
and-place planner cannot. This enables HERB 2.0 to perform
manipulation tasks even if there are large, heavy ungraspable
objects in the environment, or when there is a large uncertainty
about object poses.

Non-prehensile actions can decrease or increase object
pose uncertainty in an environment. To account for that, our
planner represents the object pose uncertainty explicitly and
conservatively.

The planner plans backwards starting from the primary
goal object and identifying the volume of space required to
manipulate it. This space is given by the volume swept by
the robot links and by the manipulated object, with the object
pose uncertainty taken into account. Then, if any other object
is blocking this space, the planner plans an action to move
the blocking object out of the way. This recursive process
continues until all the planned actions are feasible.

C. Lessons learned

The planners we have for push-grasping and for rearranging
clutter are open-loop planners. On the one hand this is good
because the robot does not depend on a specific sensor input
that may be noisy or unavailable at times. But on the other
hand the open-loop planners need to be very conservative to
guarantee success. For push-grasping this can sometimes result
in unnecessarily long pushes. For the rearrangement planner
this can result in a quick consumption of planning space the
robot can use. The lesson is: build a system that can work
open-loop, but that can also integrate sensor feedback when
it is available. With this line of thinking we are currently

working on integrating visual and tactile sensory feedback into
our system.

Clutter is not only a problem for robot actions, but it is also
a problem for robot perception. If an object is hidden behind
another object on a cluttered fridge shelf there is little chance
that the camera on the robot’s head will be able to see it.
This problem motivates us to use the rearrangement planning
framework also to move objects with the goal of making the
spaces behind them visible to the robot sensors.

VIII. TRAJECTORY OPTIMIZATION AND LEARNING

A vital requirement for a personal robot like HERB 2.0
is the ability to work with and around people, moving in
their workspaces. While the Rapidly-Exploring Random Tree
algorithm from Section VI is very good at producing feasible,
albeit random motion, we need to start thinking towards
predictability and optimality of the paths the robot executes.
With these criteria in mind, motion planning becomes a
trajectory optimization problem. However, since manipulation
tasks induce a very high-dimensional space, optimizers often
struggle with high-cost local minima corresponding to danger-
ous and sometimes even infeasible paths. In this section, we
present two ways of alleviating this issue: one is to improve
the optimizer itself (Section VIII-A), which widens the basin
of attraction of low-cost solutions; the other is to learn to
initialize the optimizer in the basin of attraction of these low-
cost solutions (Section VIII-B), thus ensuring convergence to
a good trajectory.

A. Improving the Optimizer: Extending to Goal Sets
Most manipulation tasks, such as reaching for an object,

placing it on a table or handing it off to a person, are described
by an entire region of goals rather than one particular goal con-
figuration that the robot must be in at the end of the trajectory.
This section extends a recent trajectory optimizer, CHOMP
[48], to take advantage of this goal region by changing the
end point of the trajectory during optimization [49]. Doing so
enables more initial guesses converge to low-cost trajectories.

Our algorithm, Goal Set CHOMP, optimizes a functional
that trades off between a smoothness and an obstacle cost:

U [ξ] = λfprior[ξ] + fobs[ξ] s.t. h(ξ) = 0 (1)
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Fig. 6. Left: a comparison between a single goal optimizer that cannot
find a collision-free path and the goal-set aware optimizer that shifts the
trajectory end-point to avoid collisions [49]. Right: a comparison of five
learning algorithms trained to predict the best goal from a goal set, against
the baseline of selecting a goal randomly; we initialize the optimizer with a
trajectory ending at the predicted goal, and compute the percent loss (Y axis)
over the cost obtained by the best goal for 108 different reaching tasks [50].

with the prior measuring a notion of smoothness such as sum
squared velocities or accelerations along the trajectory ξ, the
obstacle cost pushing all parts of the robot away from collision,
and h capturing constraints on the trajectory.

While CHOMP has an implicit fixed goal constraint, ξ[n] =
qgoal, our extension relaxes this assumption and replaces the
constraint by hn(ξ[n]) = 0: the goal is restricted to an entire
region rather than a single configuration.

In [49], we have shown that this extension improves upon
CHOMP for a wide range of day-to-day tasks that HERB
2.0 encounters. Fig.6(left) shows a prime example of this:
when using the single-goal version of CHOMP, we obtain a
trajectory that does not fully avoid collisions, whereas with
Goal Set CHOMP the optimizer converges to a better goal
and obtains a collision-free solution.

B. Improving the Initialization: Learning to Choose Goals

With Goal Set CHOMP, we widened the basins of attraction
of low-cost solutions, making initialization in such a basin
more likely. In this section, we will focus on improving the
initialization based on prior experiences by learning to predict
the goal at which the trajectory should end.

Because of local minima, the goal choice still has a great
influence on result of Goal Set CHOMP. Fig.7 shows the final
cost of the trajectory as a function of what goal in the goal
set the initial trajectory chooses: the difference between the
best and worst performances is drastic. However, by collecting
training data from such scenes, we can learn to predict an
initial goal that will place the final cost within only 8% of
the minimum [50]. Fig.6(right) compares the loss over this
minimum cost for five different learners against the baseline
of selecting a goal at random. Here, SVM is a Support Vector
Machine classifier that attempts to predict whether a goal
will be the best. IOC is a Maximum Margin Planning [51]
algorithm that attempts to find a cost under which the best
cost will be minimum. The Linear Regression (LR), Gaussian

Fig. 7. Left: the robot in one of the goal configurations for grasping the
bottle. Right: for the same scene, the black contour is a polar coordinate plot
of the final cost of the trajectory Goal Set CHOMP converges to as a function
of the goal it starts at; goals that make it hard to reach the object are associated
with higher cost; the bar graph shows the difference in cost between the best
goal (shown in green and marked with *) and the worst goal (shown in red)
[50].

Process (GP) and Neural Network (NN) learn to map initial
goals to final trajectory costs.

For each of these algorithms, we found it important to make
efficient use of the available data: the classifier and the inverse
optimal control method, which traditionally focus solely on
the best option, should take into account the true cost of
the other candidates; at the same time, the regressors, which
traditionally focus on all the data, should not waste resources
on the poor options. In Fig.6(right), the light colors represent
the performances of the vanilla versions of these algorithms,
which are not able to predict the best option as well. The data-
savvy version of IOC obtains the best results by combining
the focus on predicting the best goal with the awareness of
costs from other goals.

C. Lessons Learned

In moving away from the random sampling approaches from
Section VI, we are giving up the fast exploration that makes
RRTs successful for optimal, predictable motion. Even though
CHOMP is armed with an exploration technique derived from
the dynamics of physical systems, namely Hamiltonian Monte
Carlo, exploring while optimizing is more costly than pure
exploration. An idea for merging optimization and randomized
sampling is using CHOMP as the extension operator for
the tree. However, such an algorithm will spend too many
resources optimizing paths that do not contribute to the final
solution.

At the core of this work lies the idea that while trajectory
optimization in high-dimensional spaces is hard, we can make
it easier in the case of manipulation by taking advantage
of the structure inherent in the problem: tasks are described
by sets of goals that can be exploited, and the repeatability
of tasks allows for self-improvement over time. We found
that even naive learning methods improve the optimization
process, and that the benefit is even greater when using the
data in a way tailored to the problem. For future work, we are
excited about using other attributes of trajectories, beyond goal
choices, to guide this learning process. Due to its predictable
nature, trajectory optimization can benefit in a lot of cases
from machine learning in overcoming the need for exploration.
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Fig. 8. Robot-human hand-overs with HERB 2.0. (Left) Handing objects to a human during Research at Intel Day and systematic user studies. (Middle)
Hand-over configurations learned from human examples (top) and planned using the kinematic model of the human (bottom). (Right) Poses that best convey
the intent of handing over (top) and two sample trajectories with high and low contrast between carrying and hand-over configurations. Left and Right images
are taken from [52], Middle image is taken from [53].

IX. INTERACTING WITH PEOPLE

Personal robots that are intended for assisting humans in
daily tasks will need to interact with them in a number of ways.
The design of human interaction behaviors on these robots
is particularly challenging since the average user will have
little knowledge about how they work. It is essential to tune
these behaviors for the users’ expectations and preferences.
To this end, we have performed a number of systematic user-
studies with HERB 2.0 [52], [53] and we have put its human-
interaction behaviors to test at a number of public events
(Fig.8(Left)).

In designing HERB 2.0, we are particularly interested in
collaborative manipulation with humans, focusing on robot-
human hand-overs. Many of the potential tasks for personal
robots, such as fetching objects for the elderly or individuals
with motor-impairment, involve hand-over interactions. Dif-
ferent aspects of robot-human hand-overs have been studied
within robotics, including motion control and planning [54]–
[57], grasp planning [58], social interaction [59]–[61] and
grip forces during hand-over [62], [63]. A few of these
report results from user-studies involving hand-overs between
a physical robot and a human [55], [59]–[61].

A. Robot-human hand-overs

The problem of planning a hand-over is highly under-
constrained. There are infinite ways to transfer an object to a
human. As a result, it is easy to find a viable solution, however
it is hard to define what a good solution is from the human’s
perspective. Our approach involves parametrizing hand-over
behaviors and identifying heuristics for searching desirable
hand-overs in these parameter spaces.

Hand-overs involve several phases starting from approach-
ing the human with an object, to retracting the arm after
releasing the object. The object and robot configuration at the
moment of transfer and the trajectory that leads to this con-
figuration are critical. The hand-over configuration influences
how the object will be taken by the human and the trajectory
leading to this configuration lets the human predict the timing
of the hand-over and synchronize their movements.

1) Hand-over configurations: A hand-over configuration
is fully specified by a grasp on the object and a 7-DOF
arm configuration. We conducted three user-studies to identify

heuristics for choosing good hand-over configurations. The
first study (10 participants) asked users to configure several
good and bad handing configurations for five objects through
a graphical user interface. Afterwards, users were asked to
choose between two hand-over configurations that differed
by one parameter. We found that the set of good config-
urations provided by participants are concentrated around a
small region in the space of all configurations and has little
variance across participants. These good configurations expose
a large portion of the object surface, and tend to present the
object in its default orientation. While confirming these results,
the forced-choice questions revealed that participants prefer
extended arm configurations that look natural (are mappable
to a human arm configuration) [53].

In the second study (10 participants) we compared the con-
figurations learned from good examples collected in the first
study, with configurations planned using a kinematic model of
the human (Fig.8(Middle)). The robot delivered each object
twice, with the learned and planned configurations, and the
participant was asked to compare them. Participants preferred
the learned configurations and thought they were more natural
and appropriate, however they had greater reachability over
the objects presented with the planned configurations [53].

Besides allowing humans to easily take the object, a hand-
over configuration needs to convey its intention. Our third
study (50 participants) involved a survey that asks the par-
ticipant to categorize the intention of a robot configuration
holding an object. We find that the intention of handing an
object is best conveyed by configurations with an extended
arm, grasping the object from the side opposite to the human
and tilting the object towards the human (Fig.8(Right)) [52].

2) Hand-over trajectories: We parametrize hand-over tra-
jectories by the configuration in which the object is carried
while approaching the human. When the robot is ready to
deliver the object, it transitions to the hand-over configuration
through a smooth trajectory. We conducted a fourth user-
study (24 participants) to analyze the effects of the carrying
configuration. We found that carrying configurations that have
high contrast with the handing configuration results in the
most fluent hand-overs [52]. These are configurations in which
the robot holds the object close to itself, obstructing the
human from taking the object (Fig.8(Right)). They improve
the fluency by avoiding the human’s early attempts to take the
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object and by distinctly signaling the timing of the hand-over.

B. Lessons learned
We have made a lot of progress on manipulating objects

in real-world environments through novel and improved tech-
niques (Sec.VI,VII,VIII). However, adding humans into the
equation imposes unique constraints, such as usability of
interaction interfaces or legibility of the robot’s movements,
that can only be addressed through user-studies. We have seen,
in the context of robot-human interactions, that such user-
studies can reveal interesting heuristics that can be used in
manipulation and motion planning to produce desirable and
human-friendly behaviors.

X. PERCEPTION

The complexity of the tasks HERB 2.0 can perform is
strongly tied to its perceptual capabilities. In the field of
service/personal robotics, most tasks require interaction with
objects, which we need to identify and localize prior to inter-
acting with them. In order to operate in realistic household en-
vironments, we require robust object recognition performance
in complex scenes (Fig.9 for examples), low latency for real-
time operation, and scalability to a large number of objects.
To address these challenges, we have developed MOPED
[64], a framework for Multiple Object Pose Estimation and
Detection that integrates single-image and multi-image object
recognition and pose estimation. Using sparse 3D models built
from SIFT features [65], MOPED recovers the identity and 6-
DOF pose of objects for HERB 2.0 to interact with them (see
Fig.9).

A. Iterative Clustering Estimation (ICE)
The task of recognizing objects from local features in

images requires solving two sub-problems: the correspondence
problem and the pose estimation problem. The correspondence
problem refers to the accurate matching of image features to
features that belong to a particular object. The pose estimation
problem refers to the generation of object poses that are
geometrically consistent with the found correspondences.

With MOPED, we developed a scalable framework for
object recognition specifically designed to address increased
scene complexity, limit false positives, and utilize all com-
puting resources to provide low latency processing for one
or multiple simultaneous high-resolution images. The Iterative
Clustering-Estimation (ICE) algorithm is our most important
contribution to handle scenes with high complexity and keep
latency low. In essence, ICE jointly solves the correspondence
and pose estimation problems through an iterative procedure.
ICE estimates groups of features that are likely to belong to the
same object through clustering, and then searches for object
hypotheses within each of the groups. Each hypothesis found
is used to refine the feature groups that are likely to belong
to the same object, which in turn helps finding more accurate
hypotheses. The iteration of this procedure focuses the object
search only in the regions with potential objects, avoiding the
waste of processing power in unlikely regions. In addition,
ICE allows for an easy parallelization and the integration of
multiple cameras in the same joint optimization.

B. Scoring and filtering object hypotheses

Another important contribution of MOPED is a robust
metric to rank object hypotheses based on M-estimator theory.
A common metric used in model-based 3D object recogni-
tion is the sum of reprojection errors. However, this metric
prioritizes objects that have been detected with the least
amount of information, since each additional recognized object
feature is bound to increase the overall error. Instead, we
propose a quality metric that encourages objects to have as
most correspondences as possible, thus achieving more stable
estimated poses. This metric is relied upon in the clustering
iterations within ICE, and is specially useful when coupled
with our novel pose clustering algorithm. The key insight
behind our pose clustering algorithm —called Projection Clus-
tering— is that our object hypotheses have been detected
from camera data, which might be noisy, ambiguous and/or
contain matching outliers. Therefore, instead of using a regular
clustering technique in pose space (using e.g. Mean Shift [66]
or Hough Transforms [67]), we evaluate each type of outlier
and propose a solution that handles incorrect object hypotheses
and effectively merges their information with those that are
most likely to be correct.

C. Scalability and latency

In MOPED, we also address the issues of scalability,
throughput and latency, which are vital for real-time robotics
applications. ICE enables easy parallelism in the object recog-
nition process. We also introduce an improved feature match-
ing algorithm for large databases that balances strong per-
object matching accuracy with logarithmic complexity in the
number of objects. We thus improve on common per-object
matching approaches (which have linear complexity in the
number of objects), and per-database matching approaches
(which suffer from reduced matching ability). Our GPU/CPU
hybrid architecture exploits parallelism at all levels. MOPED
is optimized for bandwidth and cache management and SIMD
instructions. Components like feature extraction and matching
have been implemented on a GPU. Furthermore, a novel
scheduling scheme enables the efficient use of symmetric mul-
tiprocessing(SMP) architectures, utilizing all available cores
on modern multi-core CPUs.

D. Lessons learned

MOPED is a framework designed to recognize objects as
fast as possible and minimize end-to-end latency. In order to
achieve these goals, we completely redesigned MOPED to
maximize parallelism both at the algorithmic and architectural
level: all algorithms within MOPED are parallelizable, differ-
ent tasks can be executed simultaneously in the CPU and GPU
units, and an optimized resource scheduler enables the utiliza-
tion of all available computing for object recognition. The
multiple architectural improvements in MOPED provide over
30x improvement in latency and throughput, allowing MOPED
to perform in real-time robotic applications. Unfortunately, the
integration of MOPED within HERB 2.0 originally resulted in
MOPED consuming most of the available computing power
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Fig. 9. Recognition of real-world scenes. (Left) High-complexity scene. MOPED finds 27 objects, including partially-occluded, repeated and non-planar
objects. Using a database of 91 models and an image resolution of 1600× 1200, MOPED processes this image in 2.1 seconds. (Middle) Medium complexity
scene. MOPED processes this 640× 360 image in 87 ms and finds all known objects (The undetected green soup can is not in the database). (Right) HERB
2.0 grasping object recognized and registered by MOPED. Images taken from [68].

for all other tasks, because on-board computing is not un-
limited. We leveraged this problem by linking MOPED with
the Behavior Engine, so as to dynamically enable or disable
MOPED processing depending on the task at hand.

An additional issue that often arises in MOPED is the
model building stage to add new objects to the database.
The model building stage we use in MOPED, despite being
mostly automatic, still requires a certain amount of human
supervision. An important path to follow in the future is the
use of object discovery techniques and multi-modal data to
generate fully automated models for MOPED. In particular,
we are working on joint camera-laser discovery of objects [68]
with automated modeling, which is a necessary task for HERB
2.0 to truly achieve long-term autonomous operation.

XI. NAVIGATION

In navigating through diverse personal spaces, HERB 2.0
employs several motion planning and control strategies that
decouple levels of functionality into hierarchical layers. Two
different approaches to navigation mirror two types of cogni-
tive processes involved in human navigation.

People execute many habitual motions daily, such as walk-
ing from the cupboard to the dinner table. Through repetition,
they refine actions for smoothness and efficiency, while retain-
ing the ability to handle transient obstructions like other people
passing through. This type of navigation imposes minimal
cognitive load because it merely replays a stored trajectory.
This scenario inspires a navigator called virtual rails.

Another class of navigation action comprises non-habitual
motions. This category includes routes too long, complex, or
unfamiliar to have imprinted strongly in the brain. In following
such routes, humans continually adapt to nearby obstacles,
incurring greater cognitive load than with habitual actions. A
more adaptable navigation planner, called the Model-Based
Hierarchical Planner, fulfills this role.

A. Virtual Rails

A first approach to navigating HERB 2.0 has been derived
from an autonomous driving project [69]–[72], where it was
used to navigate a car within a road network. Note that driving
on-road clearly falls into the aforementioned structured or
habitual class of scenarios.

For HERB 2.0, a path network which connects points of
interest within the robot’s workspace was layed out manually

(Fig.10). This reduces motion planning to a small scale graph
search problem. Path execution is accomplished by an orbital
tracking controller, which feeds back the robot pose at a rate
of 100 Hz. The method calls for a global localization system
(cf. Section III-B).

Effectively, this approach turns the robot into a virtually rail-
borne system. This carries advantages and disadvantages: On
the pro side, the robot becomes very predictable. It follows the
prescribed paths accurately (at cm precision), and, due to the
quick positional feedback, quite fast and smoothly (the robot
can maneuver safely at up to 1.5 m/s). The method facilitated
easy incorporation of some basic reactive abilities into the
system: In case its virtual railtrack is occupied, the robot stops
in front of the obstacle, or it slowly follows if the obstacle is
moving.

The obvious drawback of this method is its limited capa-
bility to cope with changes in the environment. If a railtrack
gets blocked permanently, the robot will not find an alternative
route around the blockage. This is where genuine motion
planning concepts come to bear, as will be outlined in the
next section.

B. Model-Based Hierarchical Planner

The Model-Based Hierarchical Planner, or MBHP, simul-
taneously performs motion planning and path following to
continually adapt to unstructured, partially-known, or changing
environments (Fig.10). Hierarchical planners of this design
trace back to motion planners deployed outdoors in rough
terrain [73], [74]. MBHP splits the navigation task into three
layers differentiated by scale, fidelity, and planning rate.

At the largest scale, a global planner generates an approx-
imate navigation plan with the expectation that the plan will
likely change as HERB 2.0 discovers new obstacles. As such,
extensive preplanning would constitute wasted effort. Using a
simple approximation of robot motions, the global planner is
capable of rapidly rerouting around newly discovered obsta-
cles, replanning only as necessary.

At the middle level, a local planner models robot mo-
tions at high fidelity, thus exclusively generating paths that
are inherently followable by the robot. Like a car, HERB
2.0’s Segway base cannot move sideways. The local planner
samples a variety of command trajectories; for each, the
model simulates its execution on the robot to predict the
resulting path trajectory. Finding the optimal set of command
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Fig. 10. (Left) Part of the virtual rail network with points of interest, superimposed on an Lidar based obstacle map. (Right-Top) Model-Based Hierarchical
Planner (MBHP). The robot at left must navigate into place at right to assist in a home care task. It considers many possible initial motions in detail, (some
sample curves shown in black). The remainder of each path (in red) is approximated. The robot begins to follow the chosen path (green) while replanning.
Thus, a series of smooth path segments make up a complete route while reacting to changes in the environment. (Right-Bottom) HERB 2.0 navigating with
Rails at the Intel Open House.

trajectories to test remains an active area of research [75]–
[77]. In recognition of the computational expense of the robot
model, the local planner subjects itself to a limited planning
horizon. Each local path considered by the robot looks ahead
5 m or less and is concatenated with a global path to form a
complete path to the goal. In order to incorporate changes in
the environment, the local planner replans at a rate of 5 Hz.

Finally, a low-level controller accepts path commands from
the local planner and executes them on HERB 2.0. The
controller’s purpose is to ensure safety. Running at 10 Hz,
the scan rate of the ground-level Hokuyo laser scanner, the
controller commands HERB 2.0’s Segway base to follow the
chosen command trajectory—unless the laser scanner detects
an impending collision. This situation arises rarely since
the local planner selects only collision-free paths, but the
controller can respond more rapidly to fast-moving people.

C. Lessons learned

Although MBHP is the more general navigator, the contrast
between the two approaches in public spaces crowded with
people is startling. In following a virtual rail, a blocked robot
must wait for people to move out of the way. Coupled with
some audio feedback towards its environment (the robot honks
if something blocks its path), the virtual rails system proves
surprisingly capable. When honked at, most people adjust
themselves quickly and naturally to the robot. Thus, virtual
rails exploits a kind of human social structure in which people
clear a path to allow another person to pass through.

MBHP surpasses virtual rails at the task of navigating
among static clutter, but the current implementation performs
poorly in environments crowded with people since the planner
does not reason about people as intelligent obstacles who can
get out of the way. It instead searches for a completely free

path; if one is not found, HERB 2.0 will sit and wait (or worse,
waffle between various motions). Lacking the predictability of
singular intent possessed by virtual rails, MBHP does not com-
municate clearly to people where HERB 2.0 is trying to go.
The contrast of these two navigators in a crowd highlights the
importance of continued work to enhance robotic capabilities
in the detection, recognition, and prediction of human behavior
in response to robot actions.

XII. CONCLUSION

We have presented a snapshot of two years of effort on
HERB 2.0 2.0. The platform is evolving, and will forever
be evolving. Key to our progress has been a commitment
to working in a home environment and understanding the
nuances of how humans structure their environments. Un-
derstanding this structure has enabled more robust, efficient,
and predictable behavior. Some of our observations have
surprised us and they point towards much deeper research
questions, on understanding human intent, on collaborative
manipulation, and on addressing extreme clutter with physics-
based manipulation planners. We are now well positioned to
move towards new unsolved problem domains.

a) Reconciling geometric planning with physics-based
manipulation: Humans have instinct. Robots have search. We
are able to pick up knives and forks, stack plates, move objects
with our arms, balance dishes, kick open kitchen doors, and
load dishwashers. HERB 2.0 has barely scratched the surface
of what he can do with his arms and base. Our work on
push-grasping clutter is a start towards merging physics-based
manipulation with geometric search but we are excited to go
beyond that. There are two immediate questions to answer:(1)
how can we incorporate sensor feedback into our strategies,
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and (2) how can we automatically learn strategies from ob-
servation or demonstration? Answering the first question will
enable robust execution of existing strategies. The second
question is much harder to answer but is critical. There are
countless strategies to learn but robots can use their prior
knowledge and also learn from their own and other robots’
experience.

b) Collaborative Manipulation: We envision HERB 2.0
performing complex manipulation tasks with humans: HERB
2.0 should be able to prepare a meal and clear a table with
a person, or to build an IKEA shelf with them. Human-robot
interaction must go beyond dialog management, to physical
collaboration. Currently, HERB 2.0 is on its way to performing
each of these tasks autonomously. But, strangely enough,
doing these tasks with a human will be much harder: HERB
2.0 might need to sense human kinematics, human intent,
understand turn-taking, and react to the environment and
humans in real-time. So, do we really need collaboration?
There are definitely scenarios in which collaboration is critical:
in the battlefield for assembling a mortar or carrying an injured
soldier, or in the home assisting a patient with disabilities with
their activities of daily living. But even in these cases, the role
of a robot and the balance of autonomy and collaboration will
change dynamically. We are excited to explore this balance,
and the challenge of humans and robots performing tightly-
coupled manipulation tasks collaboratively.

c) Sensing and Actuation for Robotics: Do we really
need a $500, 000 robot like HERB 2.0 to enable lifelong
mobile manipulation? We have been exploring the capabilities
of simple hands. Surely, simple hands can do a lot less than
more expensive complex hands, but the details of their limits
are important. Our results to date have been surprising: we
have demonstrated that by shifting the complexity from the
mechanisms to the computational algorithms, complex tasks
like bin-picking and singulation can be achieved with simple
hands [78]–[80].

With robots like HERB 2.0, we now have the ability
to excavate these questions and are perfectly positioned to
identify, prove, develop, and demonstrate the principles of
mobile manipulation that will enable our robots to interact
with us in our environment and impact our lives in meaningful
ways.
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