
University of Washington Lecturer: Abraham Flaxman/Vahab S. Mirrokni
CSE599m: Algorithms and Economics of Networks

April 6, 2007 Scribe: Chih-Wei Huang

Lecture 4: Coordination Mechanism Design

1 Summary

The coordination mechanism is studied to influence on the quality of the equilibrium. We verify the
PoA of R||Cmax as O(m) and review the full tables of PoA and NE results under various scheduling

policies and models. In an unrelated machine, we show that the lower bound m for strongly local
policy. Furthermore, if we use efficiency based algorithm and the modified version, we get PoAs as

O(logm) and O(log2 m) respectively.

2 Coordination Mechanism

A common goal of mechanism design is to design system-wide rules which, given the selfish decisions

of the users, maximize the total social welfare. The degree to which these rules approximate the
social welfare is represented by the worst ratio of NE cost to OPT cost known as price of anarchy

(PoA) of the mechanism.
Possible solutions for this purpose including changing the system (add tolls, payments), Stack-

elberg strategy (centralized), and Coordination mechanisms. A coordination mechanism is a local
policy that assigns a cost to each strategy s, where the cost of s is a function of the agents who

have chosen s. It has advantages of local decision making and using the same type of cost.

2.1 Selfish Scheduling Game

We consider the selfish scheduling game as the example. There are n jobs must be processed on m

machines. Job i has processing time pij on machine j. If the maximum completion time (makespan)
is Cmax, the social objective is to minimize Cmax. Therefore

PoA =
Makespan of worst NE

OPT makeSpan

2.2 Local Scheduling Policies

In selfish scheduling games, the coordination mechanism for this game is a local policy that deter-

mines how to schedule jobs assigned to that machine. Each policy induces NE on jobs. There are
four types of policies:

• Shortest-first policy. We sequence the jobs in non-decreasing order.

• Longest-first policy. We sequence the jobs in non-increasing order.

• Random order policy. We processes the jobs in a ransom order.

• Makespan Policy. We process all jobs on the same machine in parallel.

1

2.3 Machine Scheduling Models

There are also different assumptions regarding the relationship between processing times yield

different scheduling problems.

1. Identical machines P ||Cmax. pij = pik = pi for each job i and k.

2. Related machies Q||Cmax. pij = pi

sj
, where sj ≤ 1 is the speed of machine j.

3. Restricted assignment B||Cmax. Each job i can be scheduled on a subset Si of machines, i.e.,
pij is equal to pi if j ∈ Si and is equal to ∞ otherwise.

4. Unrelated machines R||Cmax. The processing times pij are arbitrary positive numbers.

PoA of R||Cmax using the shortest first policy can be derived as following:

pij → pi = min
j

pij

OPT ≥

∑
pi

m

NE A: Mi = completion of the job i

Mi ≤ Mi−1 + pi

Makespan of A = Mn = (Mn − Mn−1) + ... + (M1 − M0) ≤ pn + pn−1 + ... + p1 ≤ mOPT

PoA results

Makespan Shortest-first Longest-first Randomized

P ||Cmax 2 − 2/(m + 1) 2 − 2/(m + 1) 4/3− 1/3m 2 − 2/m

Q||Cmax O(logm) O(logm) 2-2/m O(log m)

B||Cmax O(logm) O(logm) O(logm) O(log m)

R||Cmax Unbounded O(m) Unbounded O(m)

Pure NE resutls

Makespan Shortest-first Longest-first Randomized

P ||Cmax Exists Exists Exists Exists

Q||Cmax Exists Exists Exists Exists

B||Cmax Exists Exists Exists Exists

R||Cmax Exists Exists ??? Open

2.4 Lower Bound for Strongly Local Policy

Policies can be further categorized into:

• Local policy - depends on jobs assigned to machine.

• Strongly local policy - depends only on processing time of jobs on that machine.

• Ordering policy - independence of irrelevent alternative (IIA)

2

Here we want to prove the lower bound for strongly local policy starting with shortest-first. If

there are m types of jobs, type j can be scheduled on machines j and j +1, processing time of type
j on machine j is low and on machine j + 1 is high with ratio j, and all jobs on machine j have

almost the same processing time. The OPT assignment is all jobs of type j to machine j. Therefore
the number of jobs is chosen such that OPT has the same completion time for all machines.

There exists an NE that about half jobs of type j are on machine j and half on machine j + 1,
so the completion time of NE grows linearly in m.

2.5 Efficiency Based Algorithm

In efficiency based algorithm, we order jobs on each machine by their efficiency defined as the ratio
between job’s best processing time to its processing time on this machine. The PoA of algorithm
is O(logm). However, pure NE may not exist.

The algorithm can be modified to the following. Each machine simulate logm sub-machines by
round robin scheme. Submachine k of machinej handles jobs of efficiency between 2−k and 2−k+1.

Finally, jobs are ordered on sub-machines by shortest-first resulting in PoA of O(log2 m).

3 Further reading

Recommended reading:

George Christodoulou, Elias Koutsoupias, Akash Nanavati: Coordination Mechanisms. ICALP
2004: 345-357

Nicole Immorlica, Li Li, Vahab S. Mirrokni, Andreas Schulz: Coordination Mechanisms for
Selfish Scheduling. WINE 2005: 55-69

3

