
University of Washington Abraham Flaxman/Vahab S. Mirrokni
CSE599m: Algorithms and Economics of Networks

April 11, 2007 Scribe: Laura Elisa Celis

Lecture 5
Models of Network Formation

1 Models of Network Formation

This lecture introduces random graphs and the basic probabilistic methods that allow us to analyze
them. This lets us model networks by a random graphs, and then determine whether they satisfy
a given property with high probability. We find that there are often (potentially sharp) thresholds
that allow us to determine the properties of a given random graph.

2 Random Graphs

We begin by introducing Erdős-Rényi random graphs. We then discuss the First and Second
Moment Methods that will allow us to analyze these models. We then rigorously introduce graph
properties, and conclude with a discussion of threshold functions.

2.1 Introduction to Random Graphs

In 1959 Paul Erdős and Alfréd Rényi published a seminal paper in which they introduce the concept
of a random graph. There are two common definitions for Erdős-Rényi random graphs. The first
and simplest is as follows:

Definition 1. An Erdős-Rényi Random Graph, Gn,m, is a labeled graph with n vertices and m
edges chosen uniformly at random from all such graphs.

One of the first questions we consider is what is the probability that a random graph Gn,m

matches some fixed graph G∗. We can easily see that

P[Gn,m = G∗] =

{
1/

((n
2)
m

)
, if |V (G∗)| = n, and |E(G∗)| = m;

0, otherwise;

since there are
(
n
2

)
possible edges. However, while the definition is simple, the calculations soon

become tedious. Thus, we consider an alternative definition.

Definition 2. An Erdős-Rényi Random Graph, Gn,p, is a labeled graph of n vertices where each
possible edge appears independently with probability p.

As before, let G∗ be a fixed graph, and let us find the probability that a random graph Gn,p

matches G∗. Then,

P[Gn,p = G∗] =

{
p|E(G∗)|(1− p)(

n
2)−|E(G∗)|, if |V (G∗)| = n;

0, otherwise.
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We point out that Gn,p is sometimes called the binomial random graph because |E(Gn,p)| ∼
B(

(
n
2

)
, p) (i.e. the number of edges follow the binomial distribution on

(
n
2

)
points with probability

p). Notice that this implies E[|E(Gn,p)|] =
(
n
2

)
p ≈ (n2/2)p.

The two definitions of Erdős-Rényi are “the same”, in a way which we will describe in Section 2.3.
Thus we can often choose to work with whichever definition is most convenient.

2.2 Some Probability Theory

In order to work with random graphs we need to make use of a couple basic facts from probability
theory. Specifically, the First and Second Moment Methods.

Theorem 1 (First Moment Method). If X is a random variable that is integer valued and non-
negative, then

P[X 6= 0] ≤ E[X].

Proof. Since X is integer valued and nonnegative,

P[X 6= 0] =
∞∑
i=1

P[X = i]

≤
∞∑
i=1

iP[X = i]

= E[X],

as desired.

Notice that the above proof works as long as every value for X is at least 1, and there are
a countable number of such values. While it might be tempting to try to generalize to rational
numbers, we would have to take into account the distribution to ensure that we can fold in all
necessary cost.

The First Moment Method gives a convenient upper bound for P[X 6= 0]. We now consider a
lower bound.

Theorem 2 (Second Moment Method). If X is a random variable with finite variance, then

E[X]2

E[X2]
≤ P[X 6= 0].

Proof. Let Y =
{

0, if X = 0;
1, otherwise.

So by definition E[Y ] = P[X 6= 0]. By the definition of Y , we see that XY = X, and Y 2 = Y .
Thus, by the Cauchy-Schwarz inequality,

E[X]2 = E[XY ]2

≤ E[X2]E[Y 2]
= E[X2]E[Y ]
= E[X2]P[X 6= 0],

so E[X]2/E[X2] ≤ P[X 6= 0] as desired.

Both these methods become very useful when proving properties about random graphs.
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2.3 Graph Properties

Now that we have some basic tools, we want to describe and analyze random graphs in an objective
manner.

Definition 3. A graph property P is a set of graphs that is closed under graph isomorphism.

In other words, if some graph G ∈ P, then any graph G′ that is isomorphic to G will also
be in P. For example, G contains a triangle, G is k-colorable, and G is non-planar are all graph
properties since they are closed under graph isomorphism.

Given a graph property P, a typical question we might ask is “For what p is Gn,p in P with
high probability?”. Let Ptri be the graph property “has a triangle”, and let us consider the above
question.

Theorem 3. If p ∈ o(1/n), then P[Gn,p ∈ Ptri] → 0 as n →∞.

Proof. Let 1a,b,c be the indicator variable for the event that edges a, b, and c form a triangle. Thus
X =

∑
a,b,c 1a,b,c is the number of triangles in a graph. Thus, by the First Moment Method,

P[Gn,p ∈ Ptri] = P[X 6= 0]
≤ E[X].

Additionally, by the linearity of expectation,

P[Gn,p ∈ Ptri] ≤
∑

E[1a,b,c]

=
(

n

3

)
p3

≤ n3p3.

However, since p ∈ o(1/n), we know that n3p3 → 0 as n →∞, which gives the desired result.

Notice that we can refine the idea of a graph property in several ways.

Definition 4. A graph property P is monotone increasing if G ∈ P implies G + e ∈ P.

In other words, adding edges to a graph does not change the fact that it has a certain property.
Clearly Ptri is monotone increasing. However, the k-colorability and planar properties are not.
Also, note that we can similarly define a monotone decreasing property.

We can now use this fact about properties to explain why Gn,m and Gn,p are almost the same.

Theorem 4. If a graph property P is monotone increasing, then for pn = 2m/n

P[Gn,m ∈ P] ≤ 3P[Gn,p ∈ P].
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Proof. Let cm′ be the probability that a graph Gn,p has exactly m′ edges. Since P is monotone
increasing, note that P[Gn,mi ∈ P] ≤ P[Gn,mj ∈ P] when mi < mj . Thus,

P[Gn,p ∈ P] =
(n
2)∑

m′=0

P[Gn,p ∈ P : |E(Gn,p)| = m′]cm′

=
(n
2)∑

m′=0

P[Gn,m′ ∈ P]cm′

≥
(n
2)∑

m′=m

P[Gn,m′ ∈ P]cm′

≥ P[Gn,m ∈ P]
(n
2)∑

m′=m

cm′ .

Note that cm′ =
((n

2)
m′

)
pm′

(1 − p)(
n
2)−m′

, which is the same as P[B(
(
n
2

)
, p) = m′] as discussed in

Section 2.1. Additionally, recall that the expected number of edges µ = E[|E(Gn,p)|] ≈ n2p/2 = m,
since pn = 2m/n by assumption. Thus, for sufficiently large values of n,

P[Gn,p ∈ P] = P[Gn,m ∈ P]
(n
2)∑

m′=m

((
n
2

)
m′

)
pm′

(1− p)(
n
2)−m′

= P[Gn,m ∈ P] · P
[
B

((
n

2

)
, p

)
≥ µ = m

]
≥ 1/3P[Gn,m ∈ P]

since P[B(
(
n
2

)
, p) ≥ µ] → 1/2 as n →∞. Thus, P[Gn,m ∈ P] ≤ 3P[Gn,p ∈ P] as desired.

This allows us to compare Gn,m and Gn,p, and we can now prove bounds on one in terms of
the other. For example, we can now simply state the result for P[Gn,m ∈ Ptri] since we have it for
Gn,p.

2.4 Threshold Functions

A phenomenon that is seen when considering monotone properties is that of some sort of threshold
that determines when a graph Gn,p will be in P with high probability.

Definition 5. Given a monotone increasing property P, a threshold function is a function
f : N → [0, 1] such that

p ∈ o(f(n)) =⇒ P[Gn,p ∈ P] → 0,

and
p ∈ ω(f(n)) =⇒ P[Gn,p ∈ P] → 1.
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A fact that we will not prove, is that all monotone increasing properties have a threshold
function.1 Here we prove the special case that Ptri has a threshold function.

Theorem 5. The function f(n) = 1/n is a threshold function for Ptri.

Proof. Above we proved that p ∈ o(f(n)) implies P[Gn,p ∈ Ptri] → 0. Thus we need only prove
the second statement. Let p ∈ ω(f(n)) = ω(1/n). Let X =

∑
a,b,c 1a,b,c be the number of triangles

in Gn,p as before. By the Second Moment Method, P[X 6= 0] is lower bounded by E[X2]/E[X]2.
Thus it suffices to show that the latter goes to 1 as n approaches infinity.

Recall that E[X] =
(
n
3

)
p3. Additionally,

E[X2] =
∑
a,b,c

∑
d,e,f

E[1a,b,c1d,e,f ]

=
(

n

3

)
p3

[(
n− 3

3

)
p3 + 3

(
n− 3

2

)
p3 + 3

(
n− 3

1

)
p2 + 1

]
since we must consider the cases where a, b, c and d, e, f overlap. Thus,

E[X2]/E[X]2 =

(
n−3

3

)(
n
3

) +
3
(
n−3

2

)(
n
3

) +
3
(
n−3

1

)
p
(
n
3

) +
1

p3
(
n
3

) .

Notice that the last three terms in this sum are in O(1/n). Thus we need only consider the first
term. As n approaches infinity,

(
n−3

3

)
/
(
n
3

)
approaches 1. Thus, E[X2]/E[X]2 → 1, which means

P[X 6= 0] → 1 as n →∞. Hence, f(n) = 1/n is a threshold function for Ptri.

We now refine our definition of a threshold function to something stronger.

Definition 6. Given a monotone increasing property P, a sharp threshold is a function f : N →
[0, 1] such that for any ε > 0

p = (1− ε)f(n) =⇒ P[Gn,p ∈ P] → 0,

and
p = (1 + ε)f(n) =⇒ P[Gn,p ∈ P] → 1.

Note that we did not prove that 1/n is a sharp threshold. In fact, no sharp threshold exists for
Ptri.

Definition 7. A threshold that is not sharp is said to be coarse. Given a property P, if no sharp
threshold exists, we say P has a coarse threshold.

Thus, 1/n is a coarse threshold for Ptri.
1A survey covering this and other threshold results is given by Ehud Friedgut in Hunting for sharp thresholds, and

can be found at http://www.ma.huji.ac.il/~ehudf/docs/survey.ps.
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3 Further Reading

For further reading, take a look at Random Graphs and Complex Networks by Remco van der
Hofstad, which can be found at http://www.win.tue.nl/~rhofstad/NotesRGCN.pdf. Chapter 1
of this set of notes includes an introduction to Erdős-Rényi random graphs and social networks.
The set of notes also includes an introduction to various probabilistic methods, and goes into much
further detail on specific graph models.

Additionally, Random Graphs by B. Bollobás and Random Graphs by S. Janson, A.  Luczak,
and A. Ruciński are standard references for this material.

Finally, some easy-to-read lecture notes on Random Graphs can be found at http://www.math.
cmu.edu/~af1p/RandomGraphs/.
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