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Lectures 6: Degree Distributions and Concentration Inequalities

1 Summary

In preparation for the upcoming lecture on bias in traceroute sampling, we present some results
regarding the degree distributions of standard random graph models. To prove these results we will
make use of several theorems bounding the tail distributions of random variables. These theorems,
called concentration inequalities, are interesting in their own right and are widely used in the
analysis of random structures and algorithms.

2 Topic of lecture

We start the lecture by asking the following question: what is the probability that a fixed vertex
v in a random graph G ∼ Gn,p has degree k? Since each possible edge adjacent to v is present
independently with probability p, we have

Pr(deg(v) = k) =
(

n− 1
k

)
pk(1− p)n−1−k .

For p = d/n with d a constant, the expected degree of a vertex is approximately d, and we have

Pr(deg(v) = k) = (1 + o(1))
nk

k!
pke−pn = (1 + o(1))

dke−d

k!
.

Suppose we are interested in bounding the probability that the degree of a vertex is much higher
or lower than its expectation. As a first attempt, we might try a union bound:

Pr(deg(v) ≥ k) ≤
(

n

k

)
pk ≤ (np)k

k!
=

dk

k!
.

It turns out that we can do much better than this using the following theorem, called Chernoff’s
Bound.

Theorem 1 (Chernoff’s Bound). Let X1, X2, . . . , Xn be independent 0-1 random variables with
Pr(Xi = 1) , pi Let X =

∑n
i=1 Xi, and let µ = E(X) =

∑n
i=1 pi. Then for all t > 0,

Pr(X ≥ µ + t) ≤ e
−t2

2µ+2t/3 , (1)

and for any t, 0 < t < µ,

Pr(X ≤ µ− t) ≤ e
−t2

2µ . (2)

It is often easier to apply the following bound, which can be easily derived from Theorem 1.

Corollary 2. In the notation of Theorem 1, for 0 < ε < 1,

Pr(|X − µ| ≥ εµ) ≤ 2e−ε2µ/3 . (3)
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We now return to our task of bounding the tail of the degree distribution of a vertex v in
G ∼ Gn,p for p = d/n. Recall that the expectation of the degree of v is (1 + o(1))d. For vertex v,
let Xi be 1 if there is an edge from vertex i to v and 0 otherwise. Then if X =

∑
i∈V \{v} Xi we

have from (2) that

Pr(deg(v) ≤ k) = Pr(X ≤ k) = Pr(X ≤ d− (d− k)) ≤ e−(d−k)2/2d .

Now suppose that p = 8 lnn/n. Then E(deg(v)) = 8 lnn, and

Pr(deg(v) ≤ 4 ln n) ≤ e− ln n =
1
n

.

Thus by a union bound, if p = o(lnn/n), then the probability that there exists a vertex with degree
less than 1

2np approaches 0 as n →∞. In fact, it can be shown that lnn/n is a threshold function
for the property of containing a vertex with degree less than 1

2np.
So far, we have proved results about the degree distribution of a fixed vertex, but in the next

lecture we will actually be interested in the distribution of the random variable

Yk =
| {v : deg(v) ≥ k} |

n
.

Because it is not clear how Yk can be written as the sum of independent random variables, it seems
that we cannot use Theorem 1 to bound the tail distribution of Yk. In the hopes of bounding
the tail distribution, we present the next theorem, called the Azuma-Hoeffding inequality. First,
however, we need the following definition.

Definition 1. Let A1, A2, . . . , An be finite sets. Then a function f :
∏n

i=1 Ai → R satisfies the
Lipshitz condition with bound c = (c1, c2, . . . , cn) if for all k ∈ [n] and x,x′ ∈

∏n
i=1 Ai, xi = x′i for

all i 6= k implies that |f(x)− f(x′)| < ck.

Informally, a function satisfies the Lipshitz condition if changing the value of a single coordinate
does not change the value of the function by too much. We are now ready to state the Azuma-
Hoeffding Inequality.

Theorem 3 (Azuma-Hoeffding Inequality). Let X1, X2, . . . , Xn be independent random variables,
where Xi can only take on the values in the finite set Ai. Let A =

∏n
i=1 Ai and suppose that

f : A → R satisfies the Lipshitz condition with bound c = (c1, . . . , cn). Let Z = f(X1, . . . , Xn) and
let µ = E(Z). Then

Pr(Z ≥ µ + t) ≤ e
−t2

2
Pn

k=1
c2
k (4)

and

Pr(Z ≤ µ− t) ≤ e
−t2

2
Pn

k=1
c2
k . (5)

How might Theorem 3 help us bound the tail distribution of Yk? For all edges e in graph
G ∼ Gn,p, let Xe be an indicator random variable that is 1 if and only if edge e is present. Then
clearly the Xe’s are independent, and since adding or removing an edge can change the degree of
at most two vertices, Yk is a function of the Xe’s that satisfies the Lipshitz condition with bound
2/n. Thus,

Pr(|Yk − E(Yk)| ≥ t) ≤ 2e

−t2

2(n
2)·4/n2

= 2e−Θ(t2) .
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But since t = O(1), this does not provide a very strong bound on the tail distribution of Yk. The
problem is that we needed to write Yk as a function of

(
n
2

)
independent random variables, which

turned out to be too many. Indeed, if we can guarantee that there are m = o(n2) edges, then we
can get more interesting bounds from Theorem 3.

Specifically, consider the following random multi-graph model G̃n,m, in which there are m edges,
and each edge is chosen independently and uniformly at random among all possible edges. (Since
this is a multigraph, an edge can be chosen more than once, and the events of where each edge is
chosen are independent.) Then if Xi is the position of the ith edge, Yk is again a function of the
Xi’s that satisfies the Lipshitz condition with bound 2/n. Thus,

Pr(|Yk − E(Yk)| ≥ t) ≤ 2e
−t2n2

8m .

Since in this case, m can be o(n2), we can get a much stronger bound (if, for example m = Θ(n log n)
and t = Θ(n−1/3).)

Although the Azuma-Hoeffding inequality is widely applicable, we still do not have a satisfactory
bound on the tail of the distribution of Yk. We now present a final concentration inequality that
will allow us to provide an interesting bound on the tail of the distribution of Yk.

Theorem 4 (Symmetric Logarithmic Sobolev Inequality). Suppose that X1, X2, . . . , Xn and
X ′

1, X
′
2, . . . X

′
n are 2n i.i.d. random variables, and suppose that Xi and X ′

i can only take on values
in the finite set Ai. Let f :

∏n
i=1 Ai → R be a function, and define the random variables Z and Z ′

i

so that Z = f(X1, X2, . . . , Xn) and Z ′
i = f(X1, . . . , Xi−1, X

′
i, Xi+1, . . . , Xn). If

E

(
n∑

i=1

(Z − Z ′
i)

21Z≥Z′
i

∣∣∣∣∣X1, . . . , Xn

)
< c (6)

then
Pr(Z ≥ E(Z) + t) ≤ e

−t2

4c .

We can use this theorem to bound the tail of Yk in the following way. Let G and G′ be two
random graphs in Gn,p. For 1 ≤ i ≤

(
n
2

)
, let Xi (resp. X ′

i) be the indicator random variable that is
1 if and only if the ith possible edge in G (resp. G′) is present. Let Z = Yk and let Z ′

i be defined
as in the theorem. Then the expression on the left-hand side of (6) is a function of the Xi’s, and
hence a function of the graph G.

Fix a graph G, and suppose that in G, the ith edge is not present. Then regardless of the
value of X ′

i, Z ≤ Z ′
i. Hence the contribution on the left-hand side of (6) is zero for such edges i.

Now suppose that the ith edge is present in G. Then if it is present in G′ (which happens with
probability p), the value of Z and Z ′

i are the same. If it is not present in G′, (which happens with
probability 1 − p, then Z ′

i < Z if and only if one of the endpoints of edge i has degree k in G.
In this case, (Z − Z ′

i)
21Z≥Z′

i
≤ 4/n2. Of course, there are at most kn edges that are adjacent to

vertices of degree k, so we can take c to be (1− p)4k/n ≤ 4k/n. Hence, we have that

Pr(Yk ≥ E(Yk) + t) ≤ e−t2n/16k .

Assuming that k is a constant, this probability approaches 0 for t = o(1/
√

n). Thus we finally have
a theorem that provides an interesting tail bound on Yk. This theorem will also be used in the next
lecture on the bias of traceroute sampling.
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3 Proofs

In this section, we prove the Chernoff and Azuma-Hoeffding bounds. (These proofs were not in the
lecture.) We start with the proof of the Chernoff bound.

Proof of Theorem 1. To prove (1), note that for any α > 0 (to be fixed later), Pr(X ≥ µ + t) =
Pr(eαX ≥ eα(µ+t)). Hence, by Markov’s Inequality, Pr(X ≥ µ + t) ≤ E(eαX)/eα(µ+t). Note that

E
(
eαX

)
= E

(
n∏

i=1

eαXi

)
=

n∏
i=1

E
(
eαXi

)
,

where the last equality follows by the independence of the Xi’s. Using the inequality 1 + x ≤ ex,
we have that E(eαXi) = 1 + pi(eα − 1) ≤ epi(e

α−1). Hence,

E
(
eαX

)
eα(µ+t)

≤
∏n

i=1 epi(e
α−1)

eα(µ+t)
=

eµ(eα−1)

eα(µ+t)
.

Substituting α = ln(1 + t/µ) > 0, we get

Pr(X ≥ µ + t) ≤ et(
1 + t

µ

)µ+t . (7)

To finish the proof of (1), we now show that for all t > 0 the right-hand side of (7) is no greater
than the right-hand side of (1). Taking natural logarithms, we have the equivalent task of showing
that the function

f(t) = t− (µ + t) ln
(

1 +
t

µ

)
+

t2

2µ + 2t/3
is no greater than zero for all t > 0. Taking the first and second derivatives, we have

f ′(t) =
3t(t + 6µ)
2(t + 3µ)2

− ln
(

1 +
t

µ

)
and

f ′′(t) =
−t2(t + 9µ)

(t + µ)(t + 3µ)2
.

Since f(0) = f ′(0) = 0, and since f ′′(t) < 0 for all t > 0, we have that f(t) ≤ 0 for all t > 0. This
finishes the proof of (1).

The proof of (2) is similar. For any β < 0, we have by Markov’s Inequality that Pr(X ≤ µ−t) =
Pr(eβX ≥ eβ(µ−t)) ≤ E(eβX)/eβ(µ−t). Proceeding as we did in the proof of (1), we see that

Pr(X ≤ µ− t) ≤ eµ(eβ−1)

eβ(µ−t)
,

and substituting β = ln(1− t/µ) < 0 yields

Pr(X ≤ µ− t) ≤ e−t(
1− t

µ

)µ−t . (8)

As in the proof of (1), it is straightforward to use elementary calculus to show that the right-hand
side of (8) is no greater than the right-hand side of (2) for 0 < t < µ, which concludes the proof.
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Next, we prove the Azuma-Hoeffding inequality.

Proof of Theorem 3. For 0 ≤ i ≤ n, define the random variable Yi = E(Z|X1, X2, . . . , Xi). Note
that Y0 = E(Z) and Yn = Z. We first prove the following claim.

Claim 5. For all x = (x1, . . . , xn) ∈ A and for all 0 ≤ k < n, |Yk+1(x)− Yk(x)| ≤ ck+1.

Proof. Let H be the set of x′ that agree with x on the first k + 1 coordinates. More precisely,

H =
{
x′ = (x′1, . . . , x

′
n) ∈ A : x′i = xi for i ≤ k + 1

}
.

By the definition of Yk+1 and the fact that the Xi’s are independent, we have

Yk+1(x) =
∑
x′∈H

f(x′)
n∏

i=k+2

Pr(Xi = x′i) .

For each x′ ∈ H, let

H[x′] =
{
x∗ = (x∗1, . . . , x

∗
n) ∈ A : x∗i = x′i for i 6= k + 1

}
.

Note that the H[x′] partition the set of x∗ that agree with x on the first k coordinates. Therefore,

Yk(x) =
∑
x′∈H

∑
x∗∈H[x′]

f(x∗)
n∏

i=k+1

Pr(Xi = x∗i )

=
∑
x′∈H

∑
x∗∈H[x′]

f(x∗) Pr(Xk+1 = x∗k+1)
n∏

i=k+2

Pr(Xi = x′i) ,

and

|Yk+1(x)− Yk(x)| =

∣∣∣∣∣∣
∑
x′∈H

n∏
i=k+2

Pr(Xi = x′i)

f(x′)−
∑

x∗∈H[x′]

f(x∗) Pr(Xk+1 = x∗k+1)

∣∣∣∣∣∣
≤

∑
x′∈H

n∏
i=k+2

Pr(Xi = x′i)
∑

x∗∈H[x′]

Pr(Xk+1 = x∗k+1)
∣∣f(x′)− f(x∗)

∣∣ ,

where to obtain the inequality we have rewritten f(x′) as
∑

x∗∈H[x′] f(x′) Pr(Xk+1 = x∗k+1) and
applied the triangle inequality. The Lipshitz condition gives |f(x′) − f(x∗)| ≤ ck+1, and so we
conclude that |Yk+1(x)− Yk(x)| ≤ ck+1.

We will also need the following.

Claim 6. For 0 ≤ k < n, E(Yk+1|Y1, . . . , Yk) = Yk.

Proof. Using the fact that E(E(V |U,W )|W ) = E(V |W ) for all random variables U , V , and W , we
have

E(Yk+1|Y1, . . . , Yk) = E(Yk+1|X1, . . . , Xk)
= E(E(Z|X1, . . . , Xk+1)|X1, . . . , Xk)
= E(Z|X1, . . . , Xk)
= Yk .
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We now prove (4). For 1 ≤ k ≤ n, let ∆Yk = Yk − Yk−1. Then, by Claim 5, ∆Yk ≤ ck, and by
Claim 6,

E(∆Yk|Y0, . . . , Yk−1) = E(Yk|Y0, . . . , Yk−1)− E(Yk−1|Y0, . . . , Yk−1) = 0 .

Fix an α > 0, to be determined later. Writing ∆Yk as − ck
2 (1−∆Yk/ck) + ck

2 (1 + ∆Yk/ck), we have
by the convexity of the exponential function that

eα∆Yk ≤ 1−∆Yk/ck

2
e−αck +

1 + ∆Yk/ck

2
eαck =

eαck + e−αck

2
+

∆Yk

2ck
(eαck − e−αck) .

Hence,

E(eα∆Yk |Y0, . . . , Yk−1) ≤ E
(

eαck + e−αck

2
+

∆Yk

2ck
(eαck − e−αck)

∣∣∣∣ Y0, . . . , Yk−1

)
=

eαck + e−αck

2
≤ e(αck)2/2 ,

where the last inequality follows because

ex2/2 =
∑
i≥0

(x2/2)i

i!
≥
∑
i≥0

x2i

(2i)!
=

1
2

∑
i≥0

xi

i!
+

1
2

∑
i≥0

xi(−1)i

i!
=

ex + e−x

2
.

We have

E
(
eα(Yn−Y0)

)
= E

(
n∏

k=1

eα∆Yk

)
= E

((
n−1∏
k=1

eα∆Yk

)
E(eα∆Yn |Y0, . . . , Yn−1)

)

≤ E

(
n−1∏
k=1

eα∆Yk

)
e(αcn)2/2

≤ eα2
Pn

k=1 c2k/2 .

Setting α = t/
∑n

k=1 c2
k, we use Markov’s inequality to conclude that

Pr(Z ≥ µ + t) = Pr(Yn − Y0 ≥ t) = Pr(eα(Yn−Y0) ≥ eαt)

≤
E
(
eα(Yn−Y0)

)
eαt

≤ eα2
Pn

k=1 c2k/2−αt

= e
−t2

2
Pn

k=1
c2
k .

A similar argument can be used to prove (5).

4 Further reading

Concentration inequalities are treated in a number of references. The proofs of the Chernoff and
Azuma-Hoeffding inequalities were adapted from [1] and [3]. The proof of Theorem 4 can be found
in [2].
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