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Lecture 7

1 Summary

In this lecture, we theoretically analyze the bias introduced by traceroute sampling methods. For
the analysis, we assume that the sampling is done using a breadth first search from a single monitor
node. A surprising consequence of the analysis is that the degree distribution estimated by the
sampling method on a randomly chosen d-regular graph follows a power law with high probability.
This points to the fact that there is a significant bias in the estimate for the degree distribution if
we use such traceroute sampling methods.

2 Bias in Traceroute Sampling

2.1 Problem Definition

We begin by introducing some notation.

• The input graph for traceroute sampling is denoted by G.

• Let d̄ = {d1, d2, . . . , dn} be a degree sequence over n nodes. We assume that the graph G is
given by Gn,d̄. Thus G is randomly chosen from the set of graphs with n nodes and degree
sequence d̄.

• There is a single monitor node m. All other nodes of G are target nodes.

• traceroute(m, t) finds the shortest path from the monitor node m to a target node t.

• Let T denote the shortest path tree obtained as a result of finding the traceroute(m, t) for
each node t in G.

Problem Statement: Compute the degree distribution of T and compare it with G.

2.2 Analysis

The degree of any node in G is a positive integer less than n. This allows us to represent the degree
sequence d̄ as a sequence {a1, a2, . . . , an}, where ak denotes the probability that a randomly chosen
node from G has degree k.

ak =
#{v : deg(v) = k}

n

We denote the sequence {a1, a2, . . . , an} as ā. We require that the degree sequence of G be reason-
able. The definition of a reasonable degree sequence follows:

Definition 1. A degree sequence ā is reasonable iff

• ak = 0 for k < 3
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• ∃α > 2, c > 0 such that ak < ck−α for all k ≥ 3

Theorem 1 (Main). Let d̄ be a degree sequence such that corresponding ā is reasonable and let
G = Gn,d̄ be the graph over which trace route sampling is done. Let T be the shortest path tree
obtained. If Aobs

k = #{v : degT (v) = k} then there exists δ > 0 such that with high probability
|Aobs

k − naobs
k | = o(n1−δ) for all k where

aobs
m+1 =

∑
i

ai

[∫ 1

0
iti−1

(
i− 1
m

)
pvis(t)m(1− pvis(t))

i−m−1

]

pvis(t) =
1∑

j jajtj

∑
k

kakt
k(

∑
j jajt

j

dt2
)k

Intuition: Theorem 1 relates the observed degree sequence āobs with the correct degree sequence
ā. It shows that the observed and the correct degree sequence may be quite different. For example
consider the sequence ā corresponding to a 3-regular graph. Theorem 1 shows the observed degree
āobs sequence for a 3-regular graph is {1/3, 1/3, 1/3, 0, 0, . . . , 0} which can be thought of as following
a power law.

Proof of Theorem 1: The key to the analysis is choosing the right generation process for the
random graph. Given the degree sequence d̄ = {d1, d2, . . . , dn} the graph is generated as follows:

• For each node i ∈ [n] make di copies.

• For each copy c, compute xc a uniformly chosen r.v in [0, 1].

• Initialize a queue and enqueue all the copies of the monitor node.

• Use the following iterative process to maintain the queue:

– Dequeue the copy from the front of the queue

– Match it to the copy c with the highest xc.

– If c is a copy of a unvisited vertex u, enqueue all other copies of u.

It is easy to see that the above process gives a uniformly random matching on the copies. Let
G be the graph obtained. The relationship between G and T is simple and given below .

Claim 2. An edge e = (u, v) of G is created when a copy c of u is popped from the queue and
matched with a copy of v. It appears in T iff v is unvisited (not in the queue) when c is popped
from the queue.

Another useful way to think about the above process is to imagine it using time. Let t ∈ [0, 1]
be a monotonically increasing variable which in some sense represents the time at any instant. At
time t check if a copy c has xc = t. If true then match c with the copy from the front of the queue.
In addition, if c is unvisited then enqueue all siblings of c. This representation of random process
allows us to define the following random variables.
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• A(t) = number of unmatched copies at time t. Note that E[A(t)] = dnPr[c is unmatched at
time t] = dnt2. Moreover the actual value of A(t) is w.h.p within o(

√
n) from E[A(t)].

• B(t) = number of unvisited copies at time t. Note that probability that a copy of vertex of
degree k is unvisited at time t is simply tk. Thus E[B(t)] =

∑
k kakntk. Moreover the actual

value of B(t) is w.h.p within o(n1−β) (for some constant β) from E[B(t)].

• vj(t) = number of vertex of degree j unvisited at time t. Note that E[vj(t)] = ajntj . Moreover
the actual value vj(t) is w.h.p within o(

√
n) from E[vj(t)].

Thus for A(t), B(t) and vj(t) their expected values give a good approximation to their true values,
w.h.p. We will use this fact to simplify expressions involving these random variables.

Next we compute the probability that a degree k vertex v has a degree l in the tree T given
that v is visited at time t. Let this probability be denoted as Pt,k,l. To compute it, we use the
following property of the random process: When v is visited for the first time, all the copies of v are
enqueued. All edges of v are decided by matching a copy of v with a copy of some node w. If the
matched node w is already visited then the edge (v, w) occurs in G but not in T . If the matched
node w is unvisited then the edge (v, w) occurs in both G as well as T .

Using this property we compute the probability that an edge (v, w) of G is also present in T
given that v is visited at time t. Denote this probability as pvis(t). This is equivalent to probability
that w is unvisited at the time when it is matched with a copy of v from the queue. This means that
w should have been unvisited at time t (when v was visited). The probability of this happening
is simply B(t)

A(t) . Moreover, when at time t the copies of v were enqueued, there might be copies of
other nodes already in the queue. w should remain unvisited as the copies ahead of the copies of v
are matched. This happens when all the copies of w are eventually matched with copies of nodes
that were visited after time t. Thus

pvis(t) =
B(t)
A(t)

∑
j

jvj(t)
B(t)

(
B(t)
A(t)

)j−1 (1)

∼ 1∑
j jajtj

∑
k

kakt
k(

∑
j jajt

j

dt2
)k (2)

Eq 2 occurs w.h.p and is obtained by replacing A(t), B(t) and vj(t) with there expected values.
Pk,t,l is the probability that l-1 of the k-1 nodes w were unvisited at the time copies of v were being
matched. This is simply the binomial distribution with parameters k− 1 and pvis(t). Thus Pk,t,l =(
k−1
l−1

)
pvis(t)l−1(1− pvis(t))k−l. Integrating over t gives the desired result proving Theorem 1.

2.3 Regular Graphs

If the graph is ∆-regular then the expressions for āobs can be simplified.

aobs
m+1 =

∑
i

ai

[∫ 1

0
iti−1

(
i− 1
m

)
pvis(t)m(1− pvis(t))

i−m−1

]
=

∑
i

∫ 1

0

(
i− 1
m

)
x(∆−2)(l−1)(1− x∆−2)i−l

For a 3-regular the expression gets simplified to
∑

i

∫ 1
0

(
i−1
m

)
x(l−1)(1− x)i−l. This gives the degree

sequence āobs = {1/3, 1/3, 1/3, 0, 0, . . . , 0}
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3 Further reading

D. Achlioptas, A. Clauset, D. Kempe, and C. Moore, On the bias of Traceroute sampling, STOC’05.

http://www.cs.ucsc.edu/~optas/papers/traceroute.pdf
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