## Lecture 7

## 1 Summary

In this lecture, we theoretically analyze the bias introduced by traceroute sampling methods. For the analysis, we assume that the sampling is done using a breadth first search from a single monitor node. A surprising consequence of the analysis is that the degree distribution estimated by the sampling method on a randomly chosen $d$-regular graph follows a power law with high probability. This points to the fact that there is a significant bias in the estimate for the degree distribution if we use such traceroute sampling methods.

## 2 Bias in Traceroute Sampling

### 2.1 Problem Definition

We begin by introducing some notation.

- The input graph for traceroute sampling is denoted by $G$.
- Let $\bar{d}=\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$ be a degree sequence over $n$ nodes. We assume that the graph $G$ is given by $G_{n, \bar{d}}$. Thus $G$ is randomly chosen from the set of graphs with $n$ nodes and degree sequence $\bar{d}$.
- There is a single monitor node $m$. All other nodes of $G$ are target nodes.
- traceroute $(m, t)$ finds the shortest path from the monitor node $m$ to a target node $t$.
- Let $T$ denote the shortest path tree obtained as a result of finding the $\operatorname{traceroute}(m, t)$ for each node $t$ in $G$.

Problem Statement: Compute the degree distribution of $T$ and compare it with $G$.

### 2.2 Analysis

The degree of any node in $G$ is a positive integer less than $n$. This allows us to represent the degree sequence $\bar{d}$ as a sequence $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, where $a_{k}$ denotes the probability that a randomly chosen node from $G$ has degree $k$.

$$
a_{k}=\frac{\#\{v: \operatorname{deg}(v)=k\}}{n}
$$

We denote the sequence $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ as $\bar{a}$. We require that the degree sequence of $G$ be reasonable. The definition of a reasonable degree sequence follows:

Definition 1. A degree sequence $\bar{a}$ is reasonable iff

- $a_{k}=0$ for $k<3$
- $\exists \alpha>2, c>0$ such that $a_{k}<c k^{-\alpha}$ for all $k \geq 3$

Theorem 1 (Main). Let $\bar{d}$ be a degree sequence such that corresponding $\bar{a}$ is reasonable and let $G=G_{n, \bar{d}}$ be the graph over which trace route sampling is done. Let $T$ be the shortest path tree obtained. If $A_{k}^{\text {obs }}=\#\left\{v: \operatorname{deg}_{T}(v)=k\right\}$ then there exists $\delta>0$ such that with high probability $\left|A_{k}^{o b s}-n a_{k}^{o b s}\right|=o\left(n^{1-\delta}\right)$ for all $k$ where

$$
\begin{aligned}
a_{m+1}^{o b s} & =\sum_{i} a_{i}\left[\int_{0}^{1} i t^{i-1}\binom{i-1}{m} p_{v i s}(t)^{m}\left(1-p_{v i s(t)}\right)^{i-m-1}\right] \\
p_{v i s}(t) & =\frac{1}{\sum_{j} j a_{j} t^{j}} \sum_{k} k a_{k} t^{k}\left(\frac{\sum_{j} j a_{j} t^{j}}{d t^{2}}\right)^{k}
\end{aligned}
$$

Intuition: Theorem 1 relates the observed degree sequence $\bar{a}^{\text {obs }}$ with the correct degree sequence $\bar{a}$. It shows that the observed and the correct degree sequence may be quite different. For example consider the sequence $\bar{a}$ corresponding to a 3-regular graph. Theorem 1 shows the observed degree $\bar{a}^{o b s}$ sequence for a 3-regular graph is $\{1 / 3,1 / 3,1 / 3,0,0, \ldots, 0\}$ which can be thought of as following a power law.

Proof of Theorem 1: The key to the analysis is choosing the right generation process for the random graph. Given the degree sequence $\bar{d}=\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$ the graph is generated as follows:

- For each node $i \in[n]$ make $d_{i}$ copies.
- For each copy $c$, compute $x_{c}$ a uniformly chosen r.v in $[0,1]$.
- Initialize a queue and enqueue all the copies of the monitor node.
- Use the following iterative process to maintain the queue:
- Dequeue the copy from the front of the queue
- Match it to the copy $c$ with the highest $x_{c}$.
- If $c$ is a copy of a unvisited vertex $u$, enqueue all other copies of $u$.

It is easy to see that the above process gives a uniformly random matching on the copies. Let $G$ be the graph obtained. The relationship between $G$ and $T$ is simple and given below .

Claim 2. An edge $e=(u, v)$ of $G$ is created when a copy $c$ of $u$ is popped from the queue and matched with a copy of $v$. It appears in $T$ iff $v$ is unvisited (not in the queue) when $c$ is popped from the queue.

Another useful way to think about the above process is to imagine it using time. Let $t \in[0,1]$ be a monotonically increasing variable which in some sense represents the time at any instant. At time $t$ check if a copy $c$ has $x_{c}=t$. If true then match $c$ with the copy from the front of the queue. In addition, if $c$ is unvisited then enqueue all siblings of $c$. This representation of random process allows us to define the following random variables.

- $A(t)=$ number of unmatched copies at time $t$. Note that $\mathbf{E}[A(t)]=d n \operatorname{Pr}[\mathrm{c}$ is unmatched at time t$]=d n t^{2}$. Moreover the actual value of $A(t)$ is w.h.p within $o(\sqrt{n})$ from $\mathbf{E}[A(t)]$.
- $B(t)=$ number of unvisited copies at time $t$. Note that probability that a copy of vertex of degree $k$ is unvisited at time $t$ is simply $t^{k}$. Thus $\mathbf{E}[B(t)]=\sum_{k} k a_{k} n t^{k}$. Moreover the actual value of $B(t)$ is w.h.p within $o\left(n^{1-\beta}\right)$ (for some constant $\beta$ ) from $\mathbf{E}[B(t)]$.
- $v_{j}(t)=$ number of vertex of degree $j$ unvisited at time $t$. Note that $\mathbf{E}\left[v_{j}(t)\right]=a_{j} n t^{j}$. Moreover the actual value $v_{j}(t)$ is w.h.p within $o(\sqrt{n})$ from $\mathbf{E}\left[v_{j}(t)\right]$.
Thus for $A(t), B(t)$ and $v_{j}(t)$ their expected values give a good approximation to their true values, w.h.p. We will use this fact to simplify expressions involving these random variables.

Next we compute the probability that a degree $k$ vertex $v$ has a degree $l$ in the tree $T$ given that $v$ is visited at time $t$. Let this probability be denoted as $P_{t, k, l}$. To compute it, we use the following property of the random process: When $v$ is visited for the first time, all the copies of $v$ are enqueued. All edges of $v$ are decided by matching a copy of $v$ with a copy of some node $w$. If the matched node $w$ is already visited then the edge $(v, w)$ occurs in $G$ but not in $T$. If the matched node $w$ is unvisited then the edge $(v, w)$ occurs in both $G$ as well as $T$.

Using this property we compute the probability that an edge $(v, w)$ of $G$ is also present in $T$ given that $v$ is visited at time $t$. Denote this probability as $p_{v i s}(t)$. This is equivalent to probability that $w$ is unvisited at the time when it is matched with a copy of $v$ from the queue. This means that $w$ should have been unvisited at time $t$ (when $v$ was visited). The probability of this happening is simply $\frac{B(t)}{A(t)}$. Moreover, when at time $t$ the copies of $v$ were enqueued, there might be copies of other nodes already in the queue. $w$ should remain unvisited as the copies ahead of the copies of $v$ are matched. This happens when all the copies of $w$ are eventually matched with copies of nodes that were visited after time $t$. Thus

$$
\begin{align*}
p_{v i s}(t) & =\frac{B(t)}{A(t)} \sum_{j} \frac{j v_{j}(t)}{B(t)}\left(\frac{B(t)}{A(t)}\right)^{j-1}  \tag{1}\\
& \sim \frac{1}{\sum_{j} j a_{j} t^{j}} \sum_{k} k a_{k} t^{k}\left(\frac{\sum_{j} j a_{j} t^{j}}{d t^{2}}\right)^{k} \tag{2}
\end{align*}
$$

Eq 2 occurs w.h.p and is obtained by replacing $A(t), B(t)$ and $v_{j}(t)$ with there expected values. $P_{k, t, l}$ is the probability that l-1 of the k-1 nodes w were unvisited at the time copies of $v$ were being matched. This is simply the binomial distribution with parameters $k-1$ and $p_{v i s}(t)$. Thus $P_{k, t, l}=$ $\binom{k-1}{l-1} p_{v i s}(t)^{l-1}\left(1-p_{v i s}(t)\right)^{k-l}$. Integrating over $t$ gives the desired result proving Theorem 1.

### 2.3 Regular Graphs

If the graph is $\Delta$-regular then the expressions for $\bar{a}^{\text {obs }}$ can be simplified.

$$
\begin{aligned}
a_{m+1}^{o b s} & =\sum_{i} a_{i}\left[\int_{0}^{1} i t^{i-1}\binom{i-1}{m} p_{v i s}(t)^{m}\left(1-p_{v i s(t)}\right)^{i-m-1}\right] \\
& =\sum_{i} \int_{0}^{1}\binom{i-1}{m} x^{(\Delta-2)(l-1)}\left(1-x^{\Delta-2}\right)^{i-l}
\end{aligned}
$$

For a 3-regular the expression gets simplified to $\sum_{i} \int_{0}^{1}\binom{i-1}{m} x^{(l-1)}(1-x)^{i-l}$. This gives the degree sequence $\bar{a}^{o b s}=\{1 / 3,1 / 3,1 / 3,0,0, \ldots, 0\}$

## 3 Further reading

D. Achlioptas, A. Clauset, D. Kempe, and C. Moore, On the bias of Traceroute sampling, STOC'05.
http://www.cs.ucsc.edu/~optas/papers/traceroute.pdf

