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Price of Anarchy

Performance in lack of Coordination.

The worst ratio between the optimal social value and
the value of any Nash equilibrium: Price of anarchy.

Price of anarchy: Approximation Factor of a
Decentralized Mechanism for selfish agents.

Large Price of Anarchy: Need for Central Regulation.

Small Price of Anarchy: Does not indicate good
performance in lack of coordination!
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Small Price of Anarchy?

Small Price of Anarchy: Does not indicate good
performance in lack of coordination.

Some games do not possess a pure Nash equilibrium.

A game may have a Nash equilibrium, but selfish
behavior of players does not converge to it.
1) Question: What do they converge to?

Selfish behavior of players may converge to Nash
equilibria, but it may take exponential time!
2) Question: How fast players converge to approximate
solutions?(and not to Nash equilibria)

Running Time of the Decentralized Mechanism
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Related Work

Price of Anarchy: Papadimitriou, Koutsoupias (1999),
Papadimitriou (2000), Roughgarden, Tardos (2001),
Vetta (2002).

Best-response Dynamics: Kohlberg and Mertens
(1986). Kandori, Mailath, and Rob (1993), Foster and
Young, ... They do not consider the performance on
best-response walks.

Convergence to Equilibria in CS: Johnson,
Papadimitriou, Yannakakis (1988), Schaffer,
Yannakakis (1990), Even-dar, Kesselman and Mansour
(2003), Fabrikant, Papadimitriou, Talwar (2004)).
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The State Graph

We can model selfish behavior of players by a
sequence of improvement moves by players in the
state graph.

The state graph,

� � �� � � �

, is a directed graph.

(S1,S2,S3)
(S1,T2,S3)

(S1,S2,T3)

Player 2

Player 3

Each vertex in
�

: a strategy profile.

an Arc from state to state with label : improves
his payoff from to .

University of Washington, Computer Science Department — April, 2007 – p.7/48



The State Graph

The state graph,

� � �� � � �

, is a directed graph.

(S1,S2,S3)
(S1,T2,S3)

(S1,S2,T3)

Player 2

Player 3

Each vertex in

�

: a strategy profile.

an Arc from state
�

to state

� �

with label

�

:

�

improves
his payoff from

�
to

� �

.

University of Washington, Computer Science Department — April, 2007 – p.7/48



Sink Equilibria

A sink equilibrium in the state graph is a strongly
connected component without any outgoing edge in
the state graph.

We focus on (myopic) sink equilibrium in which we only
consider best-response moves.

A random best-response walk in the state graph
converges to a sink equilibrium with probability 1.
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Value of a Sink Equilibrium

A sink equilibrium is a set of states.

Each state has a social value.

Social Value of a Sink equilibrium?

Social Value of a Sink equilibrium = Average Social
value of states on a random best-response walk.

Random Best-response Walk: Choose a player
uniformly at random at each step.
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Price of Sinking

Price of Sinking = Worst ratio between the optimum
and the social value of a sink equilibrium.

: Social value at state .

: Social value of a sink equilibrium .

: The steady distribution of the
random best-response walk in .

.

Price of Sinking = OPT .
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Questions

1. What do players converge to?

Find Potential Functions? Characterize Sink
Equilibria?

2. Performance in Sink Equilibria?
Price of Sinking, Price of Anarchy?

3. Speed of Convergence to Sink Equilibria?
PLS-Complete?

4. Convergence to Approximate Solutions?

Deterministic and Random Walks?
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Rest of the Talk

Weighted congestion games:
Convergence to Equilibria.
Price of Sinking.
Speed of Convergence on Random Walks.
Speed of Convergence on Deterministic Walks.

Cut Games.

Valid-utility games
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Weighted Congestion Games(WCG)

Definition for Unsplittable Selfish Routing Games.

Given a network

� �� � � �

.

s_1 w

t_1

t_2

s_2

Each agent wants to route amount of flow from to
(via path ).

Each edge has a delay function .

Flow of an edge : .

Delay of path : .

Delay of Player : .

Social Function: Total Delay: .

Assumption: latency function is a polynomial of degree
, .
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WCG: Price of Anarchy

Price of anarchy for Mixed Nash equilibria: for linear
latency functions: 2.618 and for polynomials of degree

�

:

� �� � � � � � � � � � �

Awerbuch, Azar, and Epstien, 2005.

POA for non-atomic games (Roughgarden, Tardos’02).

General unweighted congestion games are potential
games. Rosenthal 1973.

For linear latency functions: WCG is a potential game.
Fotakis, Kontogiannis, and Spirakis, 2004

For quadratic delay functions, Nash equilibria do not
necessarily exist.
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WCG: An Example

1

3

4

2

3

6

1 5

P

P

P

1

2

3P 24

4

Two agents: ( � � � �
, ��� � �

).

� � ��� � � � � � �
,

� �
��� � � � �� ,

���
�� � � �� �

,

���
��� � � �� �

,

���
��� � � � � � 	 	

, and

��

�� � � 	 �� .

Only Sink equilibrium:
.

No Pure Nash equilibrium.

University of Washington, Computer Science Department — April, 2007 – p.15/48



WCG: An Example

1

3

4

2

3

6

1 5

P

P

P

1

2

3P 24

4

Two agents: ( � � � �
, ��� � �

).

Only Sink equilibrium:� � � � � ��
� � � �� � ��
� � � �� � ��
� � � � � � ��
� �

.

No Pure Nash equilibrium.
University of Washington, Computer Science Department — April, 2007 – p.15/48



WCG: Price of Sinking

Theorem : Price of sinking in weighted congestion
games with polynomial delay functions of degree

�

is
at most

� �� � � � � � � � � � � � �

.

Proof Idea:

Lemma 1: If player plays his best response and
change the flow from to flow , then

.
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WCG: Proof

Lemma 2: A random best-response move does not
increase the total delay much.

Lemma 3: Let be the flow after a random best
response from , then either ,

or OPT.

From Lemma 3, there exists a state in any sink
equilibrium such that OPT.

Let be the sequence of flows on the
random walk.

So by induction OPT.

Thus, the price of sinking is .
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WCG: Fast Convergence

Fabrikant, Papadimitriou, and Talwar’04: Finding a
pure NE is PLS-complete and there may be
exponential best response walks to equilibria.

Our result: Even though convergence to equilibria is
bad, this game has a fast convergence to approximate
solutions.

Theorem: In the weighted unsplittable selfish routing
game with polynomial latency functions of degree at
most , starting from any state with total latency the
expected latency of the flow after random
best responses is at most OPT.
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One-round walk

S S’
1 2 N

arbitrary ordering

� � �� � � � � �

�

-th edge has label

�
�

Random one-round walk: the ordering is picked
randomly

University of Washington, Computer Science Department — April, 2007 – p.19/48



Covering walk

S S’
1 2 1

�

:for each player

�

there exists an edge with label

�

.

k-Covering walk: .

University of Washington, Computer Science Department — April, 2007 – p.20/48



Covering walk

S S’
1 2 1

�

:for each player

�

there exists an edge with label
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k-Covering walk:
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Linear Congestion Games - UBs

Theorem 1. Starting from an arbitrary initial state
� �

, any
one-round walk

�

leads to a state

� �

that has
approximation ratio

� � � �

.
Theorem 2. Starting from the empty state

� �
, any

one-round walk

�

leads to a state

� �

that has
approximation ratio of at most

	� � � 
 �

� � 	
�

� 	

.

Lower Bound 3.08 for scheduling.
[Suri, Tóth, Zhou,2004]
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Linear Network Congestion Games - LBs

Theorem 3. For any

��� �

, there exists an

�

-player
instance of the unweighted congestion game, and an initial
state

� �

and a one-round walk

�

that results to an� � � �

-approximate solution.
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Linear Congestion Games - LBs

2N−1

N+1

N

N+1

2N−1

N

1

2

1

2

N−1 N−1

Players Facilities
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Linear Congestion Games - LBs
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Linear Congestion Games - LBs

2N−1

N+1

N

N+1

2N−1

N

1

2

1

2

N−1 N−1

Players Facilities

cost=N+N−1

opt=2N−1

2
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Linear Congestion Games - LBs

Theorem. For any

�� �

, and for any sufficiently large

��� �

, there exists an

�

-player instance of the
unweighted congestion game, an initial state

� �

, and
an ordering � of the players, such that starting from

� �

,
after

�

rounds where the players play according to �,
the cost of the resulting allocation is a� � � � ��

-approximation, where � � � � � 	� 


.

Theorem. For any

��� �

, there exists an

�

-player
instance of the unweighted congestion game, and an
initial state

� �

such that for any one-round walk

�

starting from

� �
, the state at the end of

�

is an� � � �

-approximate solution.

University of Washington, Computer Science Department — April, 2007 – p.24/48



Linear Congestion Games - LBs
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Linear Congestion Games - LBs

N+1

N

N+1

N

1

2

1

2

N−1 N−1

FacilitiesPlayers

0

2N 2N

2N+1

S={{0},{i},{N+1,...,2N}}

S={{2N+1},{i},{1,...,N}}

i

i

k players

m players

University of Washington, Computer Science Department — April, 2007 – p.25/48



Linear Congestion Games - LBs

N+1

N

N+1
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1
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2

N−1 N−1

FacilitiesPlayers

0

2N 2N

2N+1

k players

m players

k>N−m

2 2cost>k+m+N=Ω(Ν)2
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Questions

1. What do players converge to?

Find Potential Functions? Characterize Sink
Equilibria?

2. Performance in Sink Equilibria?
Price of Sinking, Price of Anarchy?

3. Speed of Convergence to Sink Equilibria?
PLS-Complete?

4. Convergence to Approximate Solutions?

Deterministic and Random Walks?
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Rest of the Talk

Cut Games: Convergence on Random and Determinist
Best-response Paths.

Valid-utility games
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A Cut game: The Party Affiliation Game

Cut game:

Players: Nodes of the graph.
Player’s strategy � � � � �

� �

(Republican or
Democrat)
An action profile corresponds to a cut.
Payoff: Total Contribution in the cut.
Change Party if you gain.

2 and 5 are unhappy.

2

2

3
4

7

1

2

3

5
3

2

Cut Value: 
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The Cut Game: Nash equilibria

2 and 5 are unhappy.

2
3

4

1 3

2

5 2
3

2

Cut Value: 8
Pure Nash Equilibrium.

2

2

3
4

7

1

2

3

5
3

2

Cut Value: 

The Optimum.

2
3

4

1 3

Cut Value: 

2 5

2

2

3
4

7

1

2

3

5
3

2

Cut Value: 12

3

3 2
2

2 and 5 are unhappy.

Social Function:
The cut value.

Price of Anarchy for this instance: .
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The Cut Game: Nash equilibria

The Optimum.

2
3

4

1 3

Cut Value: 

2 5

2

2

3
4

7

1

2

3

5
3

2

Cut Value: 12

3

3 2
2

2 and 5 are unhappy.

Social Function:
The cut value.

Price of Anarchy for this instance:

� �
� � �

�

�

.
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The Cut game

Cut game:

2 and 5 are unhappy.

2

2

3
4

7

1

2

3

5
3

2

Cut Value: 

Social Function:
The Cut Value
Total Happiness

Price of anarchy: at most 2.

Local search algorithm for Max-Cut!
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The Cut game

Cut game:

2 and 5 are unhappy.

2

2

3
4

7

1

2

3

5
3

2

Cut Value: 

Social Function:
The Cut Value

Convergence:
Finding local optimum for Max-Cut is
PLS-complete (Schaffer, Yannakakis [1991]).
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Cut Game: Walks to Nash equilibria

Unweighted graphs After

� ��� � �

steps, we converge to
a Nash equilibrium.

Weighted graphs: It is PLS-complete.
PLS-Complete problems and tight PLS reduction
(Johnson, Papadimitriou, Yannakakis [1988]).
Tight PLS reduction from Max-Cut (Schaffer,
Yannakakis [1991])
There are some states that are exponentially far
from any Nash equilibrium.

Question: Are there long poor covering walks?
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Cut Game: A Bad Example

Consider graph

�

, a line of � vertices. The weight of
edges are

� � � � �
� � � � �
� �� � � � � � � � �
� . Vertices are

labelled

� �� � � � � throughout the line. Consider the
round of best responses:

1+
1/n

1+
2/n

1+
n−

2/n

1+
n−

1/n

1

Theorem: In the above example, the cut value after

�

rounds is

� � �
�

�
of the optimum.
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A Bad Example: Illustration

1

1+2/n

1+n−2/n

1+n−1/n

1

1+1/n 1+1/n

1+2/n

1+n−2/n

1+n−1/n

After one move.
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A Bad Example: Illustration

1+2/n

1+n−2/n

1+n−1/n

1

1+1/n
1+1/n

1+2/n

1+n−2/n

1+n−1/n

1

1+2/n

1+n−2/n

1+n−1/n

1
1+1/n

1

1+2/n

1+n−2/n

1+1/n

1+1/n

After � moves (one round)
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A Bad Example: Illustration

1+n−2/n

1+2/n

1+n−2/n

1+n−1/n

1

1+1/n

1

1+1/n

1+2/n

1

1+1/n

1+2/n

1+n−2/n

1+n−1/n 1+n−1/n

After two rounds.
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Unweighted Cut Game: A Bad Example

Let graph

�

be the following bipartite graph with� � � � � �
� � �

�
� � �

� ��� � � �
� �

, and

� � � � � � � �

� � �
�

� � �
� � �

� � �
� ��� � � � � � � � � � �
� �

.

Theorem: In the above example, the cut value after
rounds is of the optimum.

In unweighted graphs, the value of the cut after an
-covering walk is a constant-factor of the optimum

cut.
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Random One-round walks

Theorem:(M., Sidiropoulos[2004]) The expected value
of the cut after a random one-round path is at most

�
�

of the optimum.

Proof Sketch: The sum of payoffs of nodes after their
moves is -approximation. In a random ordering, with
a constant probability a node occurs after of its
neighbors. The expected contribution of a node in the
cut is a constant-factor of its total weight.
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Exponentially Long Poor Walks

Theorem: (M., Sidiropoulos[2004]) There exists a
weighted graph

� � �� � � � � � � � � �

, with

� � � � �� � � �� �

,
and a

�

-covering walk

�

in the state graph, for some

�

exponentially large in � , such that the value of the cut
at the end of

�

, is at most

� � � �� �
of the optimum cut.

Proof Sketch:
Use the example for the exponentially long paths to the
Nash equilibrium in the cut game. Find a player, , that
moves exponentially many times. Add a line of
vertices to this graph and connect all the vertices to
player .
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Poor Long Walk: Illustration

n

1

2 43

v
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Poor Long Walk: Illustration

v
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n

1

v
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4
n

1

v

2 3 n−1

n

1
2 3 n−1

n

v

1

2 43 n
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Mildly Greedy Players

A Player is 2-greedy, if she does not move if she
cannot double her payoff.

Theorem:(M., Sidiropoulos[2004]) One round of selfish
behavior of 2-greedy players converges to a
constant-factor cut.

Proof Idea: If a player moves it improves the value of
the cut by a constant factor of its contribution in the cut.

Message: Mildly Greedy Players converge faster.
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Questions

1. What do players converge to?

Find Potential Functions? Characterize Sink
Equilibria?

2. Performance in Sink Equilibria?
Price of Sinking, Price of Anarchy?

3. Speed of Convergence to Sink Equilibria?
PLS-Complete?

4. Convergence to Approximate Solutions?

Deterministic and Random Walks?
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Rest of the Talk

Valid-utility games: Price of Sinking.

Valid-utility games: PLS-Completeness.
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Valid-Utility Games

Strategy of each player is a subset of a groundset.

V
v1

v2

v4

v3

v5

v6

v7

Submodular Social Function: Social Function is a
submodular set function on the union of strategies of
players.

The payoff of any player is at least the change that he
makes in the social function by playing.

The sum of payoffs is at most the social function.

In basic-utility games, the payoff is equal to the change
that a player makes...
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Examples

Several examples, including the facility location game,
market sharing games (Goemans, Li, M. Thottan), and
a distributed caching game (Fleischer, Goemans, M.
Sviridenko)

Market Sharing Game (Goemans, Li, M., Thottan
[2004])

Each market has a value.
The value of Market is divided equally between
players.
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Valid-utility Games: Price of Anarchy

Theorem:(Vetta[2002]) The price of anarchy (of a
mixed Nash equilibrium) in valid-utility games is at
most 2.

Theorem:(Vetta[2002]) Pure Nash equilibria exists for
basic-utility games and Nash dynamics converges to a
Nash equilibrium.
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Valid-utility Games: Price of Sinking

Theorem: The price of sinking in valid-utility games is
between � and � � �

.
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Basic-Utility Games: Convergence

Theorem:(M.,Vetta[2004]) In basic-utility games, after
one round of selfish behavior of players, they converge
to a

�
� -optimal solution.

Theorem: In basic-utility games, after a random walk of
length

� �� � � � � �

of best responses of players, they
converge to a

�
� � �-optimal solution.

Theorem: (M., Vetta[2004]) In a market sharing game,
after one round of selfish behavior of players, they
converge to a -optimal solution and this is almost

tight.
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Exponential Convergence to Sink Eq.

Theorem: Finding a state in the sink equilibrium of a
valid-utility game is PLS-Complete.

Theorem: There are states that are exponentially far
from any state in a sink equilibrium.
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Questions

1. What do players converge to?

Find Potential Functions? Characterize Sink
Equilibria?

2. Performance in Sink Equilibria?
Price of Sinking, Price of Anarchy?

3. Speed of Convergence to Sink Equilibria?
PLS-Complete?

4. Convergence to Approximate Solutions?

Deterministic and Random Walks?

5. TAKE YOUR FAVORITE GAME and ANSWER THESE
QUESTIONS.
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