Algorithms and Economics of Networks:

Convergence and Approximation in Games

Microsoft Research, Theory Group

Reference

- Convergence in Competitive Games.
 - Vetta, Mirrokni
- Sink equilibria and Convergence.
 - Goemans, Mirrokni, Vetta.
- Convergnec in Potential Games.
 - Christodoulou, Mirrokni, Sidiropoulos.

Outline

- Price of Anarchy.
- State Graph and Convergence on Best-response Walks.
- Sink equilibria and Price of Sinking.
- Weighted and Unweighted Network Congestion Games.
- Cut Games.
- Valid-utility Games (Submodular-utility Games).

Price of Anarchy

- Performance in lack of Coordination.
- The worst ratio between the optimal social value and the value of any Nash equilibrium: Price of anarchy.
- Price of anarchy: Approximation Factor of a Decentralized Mechanism for selfish agents.

Price of Anarchy

- Performance in lack of Coordination.
- The worst ratio between the optimal social value and the value of any Nash equilibrium: Price of anarchy.
- Price of anarchy: Approximation Factor of a Decentralized Mechanism for selfish agents.
- Large Price of Anarchy: Need for Central Regulation.

Price of Anarchy

- Performance in lack of Coordination.
- The worst ratio between the optimal social value and the value of any Nash equilibrium: Price of anarchy.
- Price of anarchy: Approximation Factor of a Decentralized Mechanism for selfish agents.
- Large Price of Anarchy: Need for Central Regulation.
- Small Price of Anarchy: Does not indicate good performance in lack of coordination!

- Small Price of Anarchy: Does not indicate good performance in lack of coordination.
- Some games do not possess a pure Nash equilibrium.

- Small Price of Anarchy: Does not indicate good performance in lack of coordination.
- Some games do not possess a pure Nash equilibrium.
- A game may have a Nash equilibrium, but selfish behavior of players does not converge to it.

- Small Price of Anarchy: Does not indicate good performance in lack of coordination.
- Some games do not possess a pure Nash equilibrium.
- A game may have a Nash equilibrium, but selfish behavior of players does not converge to it.
 1) Question: What do they converge to?

- Small Price of Anarchy: Does not indicate good performance in lack of coordination.
- Some games do not possess a pure Nash equilibrium.
- A game may have a Nash equilibrium, but selfish behavior of players does not converge to it.
 1) Question: What do they converge to?
- Selfish behavior of players may converge to Nash equilibria, but it may take exponential time!

- Small Price of Anarchy: Does not indicate good performance in lack of coordination.
- Some games do not possess a pure Nash equilibrium.
- A game may have a Nash equilibrium, but selfish behavior of players does not converge to it.
 1) Question: What do they converge to?
- Selfish behavior of players may converge to Nash equilibria, but it may take exponential time!
 2) Question: How fast players converge to approximate solutions?(and not to Nash equilibria)
 → Running Time of the Decentralized Mechanism

Related Work

Price of Anarchy: Papadimitriou, Koutsoupias (1999), Papadimitriou (2000), Roughgarden, Tardos (2001), Vetta (2002).

Related Work

- Price of Anarchy: Papadimitriou, Koutsoupias (1999), Papadimitriou (2000), Roughgarden, Tardos (2001), Vetta (2002).
- Best-response Dynamics: Kohlberg and Mertens (1986). Kandori, Mailath, and Rob (1993), Foster and Young, ... They do not consider the performance on best-response walks.

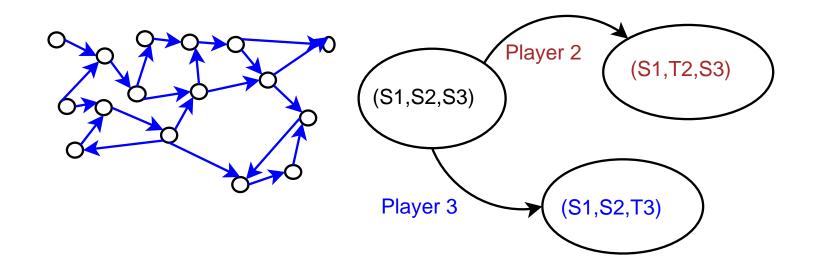
Related Work

- Price of Anarchy: Papadimitriou, Koutsoupias (1999), Papadimitriou (2000), Roughgarden, Tardos (2001), Vetta (2002).
- Best-response Dynamics: Kohlberg and Mertens (1986). Kandori, Mailath, and Rob (1993), Foster and Young, ... They do not consider the performance on best-response walks.
- Convergence to Equilibria in CS: Johnson, Papadimitriou, Yannakakis (1988), Schaffer, Yannakakis (1990), Even-dar, Kesselman and Mansour (2003), Fabrikant, Papadimitriou, Talwar (2004)).

The State Graph

We can model selfish behavior of players by a sequence of improvement moves by players in the state graph.

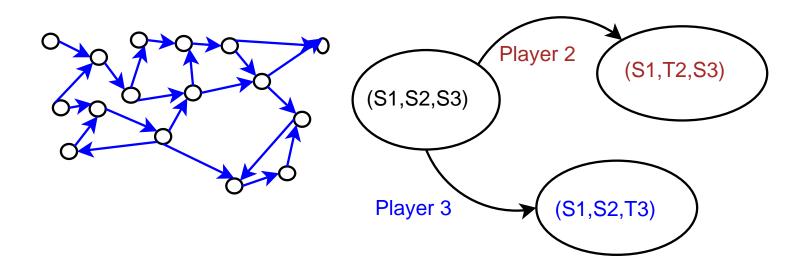
• The state graph, $\mathcal{D} = (\mathcal{V}, \mathcal{E})$, is a directed graph.



• Each vertex in \mathcal{V} : a strategy profile.

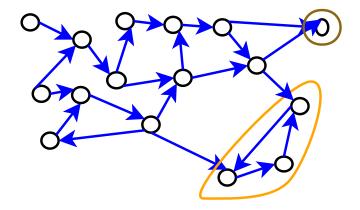
The State Graph

• The state graph, $\mathcal{D} = (\mathcal{V}, \mathcal{E})$, is a directed graph.

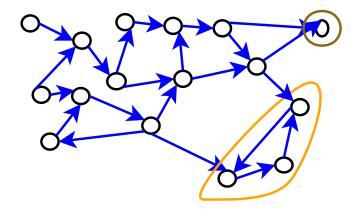


- **•** Each vertex in \mathcal{V} : a strategy profile.
- an Arc from state S to state S' with label j: j improves his payoff from S to S'.

A sink equilibrium in the state graph is a strongly connected component without any outgoing edge in the state graph.

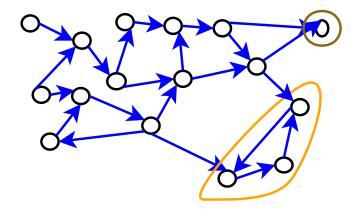


A sink equilibrium in the state graph is a strongly connected component without any outgoing edge in the state graph.



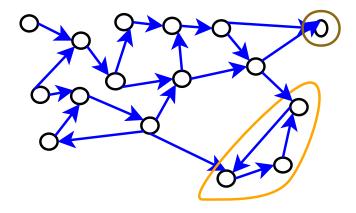
It is a sink, i.e., when players arrive to a state in the sink equilibrium, they do not leave the sink equilibrium.

A sink equilibrium in the state graph is a strongly connected component without any outgoing edge in the state graph.



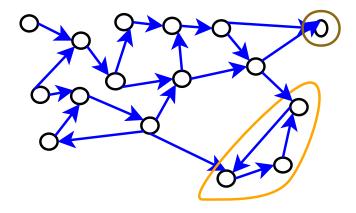
We focus on (myopic) sink equilibrium in which we only consider best-response moves.

A sink equilibrium in the state graph is a strongly connected component without any outgoing edge in the state graph.



- We focus on (myopic) sink equilibrium in which we only consider best-response moves.
- A random best-response walk in the state graph converges to a sink equilibrium with probability 1.

A sink equilibrium in the state graph is a strongly connected component without any outgoing edge in the state graph.



- We focus on (myopic) sink equilibrium in which we only consider best-response moves.
- A random best-response walk in the state graph converges to a sink equilibrium with probability 1.

- A sink equilibrium is a set of states.
- Each state has a social value.

- A sink equilibrium is a set of states.
- Each state has a social value.
- Social Value of a Sink equilibrium?

- A sink equilibrium is a set of states.
- Each state has a social value.
- Social Value of a Sink equilibrium?
- Social Value of a Sink equilibrium = Average Social value of states on a random best-response walk.

- A sink equilibrium is a set of states.
- Each state has a social value.
- Social Value of a Sink equilibrium?
- Social Value of a Sink equilibrium = Average Social value of states on a random best-response walk.
- Random Best-response Walk: Choose a player uniformly at random at each step.

Price of Sinking = Worst ratio between the optimum and the social value of a sink equilibrium.

- Price of Sinking = Worst ratio between the optimum and the social value of a sink equilibrium.
- $\gamma(S)$: Social value at state S.
- $\Gamma(Q)$: Social value of a sink equilibrium Q.

- Price of Sinking = Worst ratio between the optimum and the social value of a sink equilibrium.
- $\gamma(S)$: Social value at state S.
- $\Gamma(Q)$: Social value of a sink equilibrium Q.
- $\pi_Q : Q \to \mathbb{R}^+ \cup \{0\}$: The steady distribution of the random best-response walk in Q.
- $\Gamma(Q) = \sum_{S \in Q} \pi_Q(S) \gamma(S).$

- Price of Sinking = Worst ratio between the optimum and the social value of a sink equilibrium.
- $\gamma(S)$: Social value at state S.
- $\Gamma(Q)$: Social value of a sink equilibrium Q.
- $\pi_Q : Q \to \mathbb{R}^+ \cup \{0\}$: The steady distribution of the random best-response walk in Q.
- $\Gamma(Q) = \sum_{S \in Q} \pi_Q(S) \gamma(S).$
- Price of Sinking = $\frac{OPT}{\min_{Q \in Q} \Gamma(Q)}$.

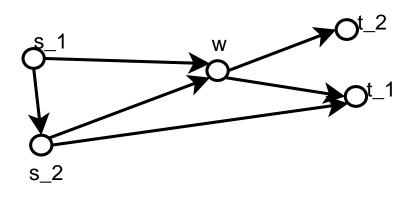
Questions

- 1. What do players converge to?
 - Find Potential Functions? Characterize Sink Equilibria?
- 2. Performance in Sink Equilibria?
 - Price of Sinking, Price of Anarchy?
- 3. Speed of Convergence to Sink Equilibria?
 - PLS-Complete?
- 4. Convergence to Approximate Solutions?
 - Deterministic and Random Walks?

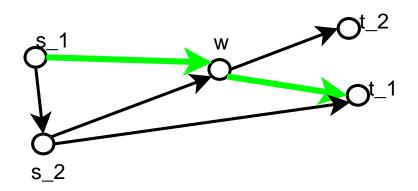
Rest of the Talk

- Weighted congestion games:
 - Convergence to Equilibria.
 - Price of Sinking.
 - Speed of Convergence on Random Walks.
 - Speed of Convergence on Deterministic Walks.
- Cut Games.
- Valid-utility games

- Definition for Unsplittable Selfish Routing Games.
- Given a network G(V, E).



- Definition for Unsplittable Selfish Routing Games.
- Given a network G(V, E).
- Each agent *i* wants to route r_i amount of flow from s_i to t_i (via path P_i).



- Definition for Unsplittable Selfish Routing Games.
- Given a network G(V, E).
- Each agent *i* wants to route r_i amount of flow from s_i to t_i (via path P_i).
- ▶ Each edge has a delay function $l_e : \mathbb{R} \to \mathbb{R}$.
- Flow of an edge e: $f_e = \sum_{i:e \in P_i} r_i$.



- Definition for Unsplittable Selfish Routing Games.
- Given a network G(V, E).
- Each agent *i* wants to route r_i amount of flow from s_i to t_i (via path P_i).
- ▶ Each edge has a delay function $l_e : \mathbb{R} \to \mathbb{R}$.
- Flow of an edge e: $f_e = \sum_{i:e \in P_i} r_i$.
- Delay of path *P*: $l(P) = \sum_{e \in P} l_e(f_e)$.
- Delay of Player *i*: $l_i(f) = r_i l(P_i) = r_i \sum_{e \in P_i} l_e(f_e)$.

- Definition for Unsplittable Selfish Routing Games.
- Given a network G(V, E).
- Each agent *i* wants to route r_i amount of flow from s_i to t_i (via path P_i).
- Each edge has a delay function $l_e : \mathbb{R} \to \mathbb{R}$.
- Flow of an edge e: $f_e = \sum_{i:e \in P_i} r_i$.
- Delay of path *P*: $l(P) = \sum_{e \in P} l_e(f_e)$.
- Delay of Player *i*: $l_i(f) = r_i l(P_i) = r_i \sum_{e \in P_i} l_e(f_e)$.
- Social Function: Total Delay: $l(f) = \sum_i l_i(f)$.

Weighted Congestion Games(WCG)

- Definition for Unsplittable Selfish Routing Games.
- Given a network G(V, E).
- Each agent *i* wants to route r_i amount of flow from s_i to t_i (via path P_i).
- Each edge has a delay function $l_e : \mathbb{R} \to \mathbb{R}$.
- Flow of an edge e: $f_e = \sum_{i:e \in P_i} r_i$.
- Delay of path *P*: $l(P) = \sum_{e \in P} l_e(f_e)$.
- Delay of Player *i*: $l_i(f) = r_i l(P_i) = r_i \sum_{e \in P_i} l_e(f_e)$.
- Social Function: Total Delay: $l(f) = \sum_i l_i(f)$.
- Assumption: latency function is a polynomial of degree $d, l_e(x) = \sum_{i=0}^{d} a_{e,i} x^i.$

WCG: Price of Anarchy

- Price of anarchy for Mixed Nash equilibria: for linear latency functions: 2.618 and for polynomials of degree $d: O(2^d(d+1)^{d+1})$ Awerbuch, Azar, and Epstien, 2005.
- POA for non-atomic games (Roughgarden, Tardos'02).

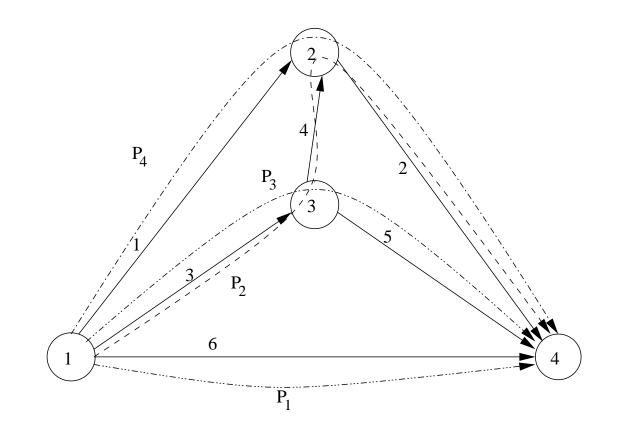
WCG: Price of Anarchy

- Price of anarchy for Mixed Nash equilibria: for linear latency functions: 2.618 and for polynomials of degree d: O(2^d(d+1)^{d+1}) Awerbuch, Azar, and Epstien, 2005.
- POA for non-atomic games (Roughgarden, Tardos'02).
- General unweighted congestion games are potential games. Rosenthal 1973.
- For linear latency functions: WCG is a potential game. Fotakis, Kontogiannis, and Spirakis, 2004

WCG: Price of Anarchy

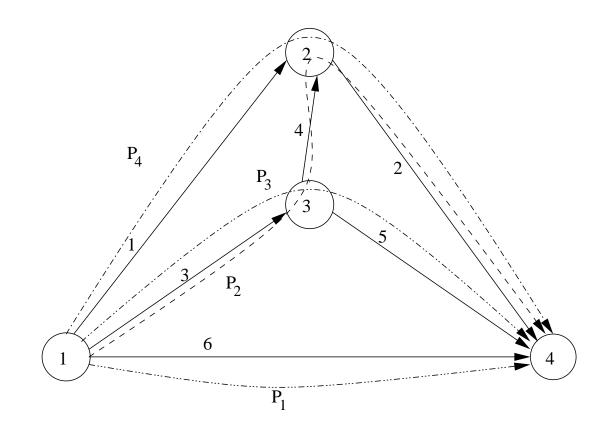
- Price of anarchy for Mixed Nash equilibria: for linear latency functions: 2.618 and for polynomials of degree d: O(2^d(d+1)^{d+1}) Awerbuch, Azar, and Epstien, 2005.
- POA for non-atomic games (Roughgarden, Tardos'02).
- General unweighted congestion games are potential games. Rosenthal 1973.
- For linear latency functions: WCG is a potential game. Fotakis, Kontogiannis, and Spirakis, 2004
- For quadratic delay functions, Nash equilibria do not necessarily exist.

WCG: An Example



Two agents: $(r_1 = 1, r_2 = 2)$. $l_1(x) = x + 33, l_2(x) = 13x, l_3(x) = 3x^2, l_4(x) = 6x^2, l_5(x) = x^2 + 44, \text{ and } l_6(x) = 47x.$

WCG: An Example



- **•** Two agents: $(r_1 = 1, r_2 = 2)$.
- Only Sink equilibrium: $\{(P_1, P_2), (P_3, P_2), (P_3, P_4), (P_1, P_4)\}.$
- No Pure Nash equilibrium.

WCG: Price of Sinking

- Theorem : Price of sinking in weighted congestion games with polynomial delay functions of degree d is at most $O(2^{2d}(d+1)^{2d+3})$.
- Proof Idea:

WCG: Price of Sinking

- Theorem : Price of sinking in weighted congestion games with polynomial delay functions of degree d is at most $O(2^{2d}(d+1)^{2d+3})$.
- Proof Idea:
- Lemma 1: If player *i* plays his best response and change the flow from *f* to flow f'_i , then $l(f'_i) \leq l(f) + (d+1)l_i(f'_i) l_i(f) \leq l(f) + dl_i(f)$.

Lemma 2: A random best-response move does not increase the total delay much.

- Lemma 2: A random best-response move does not increase the total delay much.
- Lemma 3: Let f' be the flow after a random best response from f, then either $\mathbf{E}[l(f')|f] \leq (1 - \frac{1}{2n})l(f)$, or $l(f) \leq O(2^{2d}(d + 1^{2d+2})\mathsf{OPT}.$

- Lemma 2: A random best-response move does not increase the total delay much.
- Lemma 3: Let f' be the flow after a random best response from f, then either $\mathbf{E}[l(f')|f] \leq (1 - \frac{1}{2n})l(f)$, or $l(f) \leq O(2^{2d}(d + 1^{2d+2})\mathsf{OPT}.$
- ▶ From Lemma 3, there exists a state in any sink equilibrium such that $l(f_0) \leq O(2^d(d+1)^{2d+2})$ OPT.

- Lemma 2: A random best-response move does not increase the total delay much.
- ▶ Lemma 3: Let f' be the flow after a random best response from f, then either $\mathbf{E}[l(f')|f] \leq (1 \frac{1}{2n})l(f)$, or $l(f) \leq O(2^{2d}(d+1^{2d+2})\mathsf{OPT}.$
- ▶ From Lemma 3, there exists a state in any sink equilibrium such that $l(f_0) \leq O(2^d(d+1)^{2d+2})$ OPT.
- Let $f_0, f_1, f_2, \ldots, f_N$ be the sequence of flows on the random walk.

- Lemma 2: A random best-response move does not increase the total delay much.
- Lemma 3: Let f' be the flow after a random best response from f, then either $\mathbf{E}[l(f')|f] \leq (1 - \frac{1}{2n})l(f)$, or $l(f) \leq O(2^{2d}(d + 1^{2d+2})\mathsf{OPT}.$
- From Lemma 3, there exists a state in any sink equilibrium such that $l(f_0) \leq O(2^d(d+1)^{2d+2})$ OPT.
- Let $f_0, f_1, f_2, \ldots, f_N$ be the sequence of flows on the random walk.
- So by induction $E[l(f_j)] \le O(2^{2d}(d+1)^{2d+3})$ OPT.
- Thus, the price of sinking is $O(2^{2d}(d+1)^{2d+3})$.

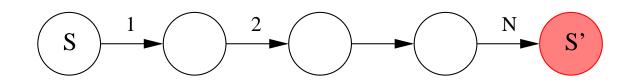
WCG: Fast Convergence

- Fabrikant, Papadimitriou, and Talwar'04: Finding a pure NE is PLS-complete and there may be exponential best response walks to equilibria.
- Our result: Even though convergence to equilibria is bad, this game has a fast convergence to approximate solutions.

WCG: Fast Convergence

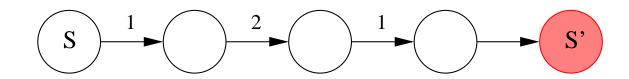
- Fabrikant, Papadimitriou, and Talwar'04: Finding a pure NE is PLS-complete and there may be exponential best response walks to equilibria.
- Our result: Even though convergence to equilibria is bad, this game has a fast convergence to approximate solutions.
- Theorem: In the weighted unsplittable selfish routing game with polynomial latency functions of degree at most d, starting from any state with total latency C the expected latency of the flow after $O(n \log C)$ random best responses is at most $O(2^{2d}(d+1)^{2d+3})$ OPT.

One-round walk



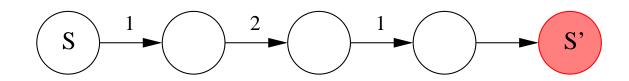
- arbitrary ordering i_1, \ldots, i_N
- $\textbf{J} \cdot \textbf{j} \cdot \textbf{th} \ edge \ has \ label \ i_j$
- Random one-round walk: the ordering is picked randomly

Covering walk



 \checkmark \mathcal{P} :for each player *i* there exists an edge with label *i*.

Covering walk



- \checkmark \mathcal{P} :for each player *i* there exists an edge with label *i*.
- **• k-Covering walk**: $\mathcal{P}_1, \ldots, \mathcal{P}_k$.

Theorem 1. Starting from an arbitrary initial state S^0 , any one-round walk \mathcal{P} leads to a state S^N that has approximation ratio O(N).

Theorem 2. Starting from the empty state S^0 , any one-round walk \mathcal{P} leads to a state S^N that has approximation ratio of at most $\frac{(\phi+1)^2}{\phi} \approx 4.24$.

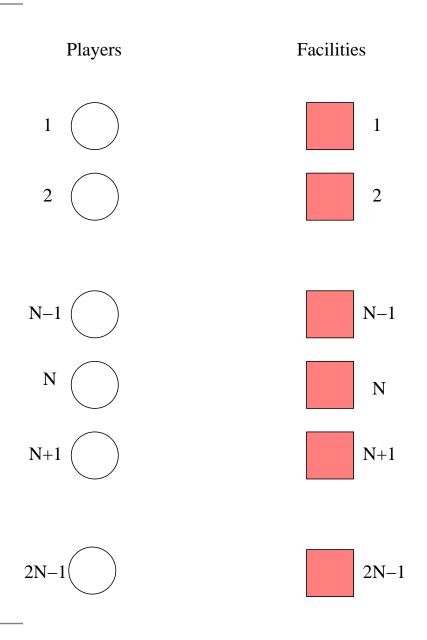
Theorem 1. Starting from an arbitrary initial state S^0 , any one-round walk \mathcal{P} leads to a state S^N that has approximation ratio O(N).

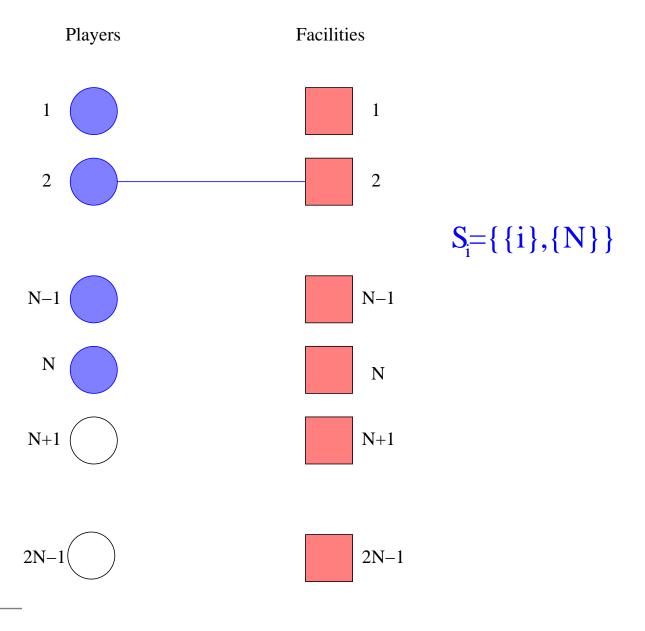
Theorem 2. Starting from the empty state S^0 , any one-round walk \mathcal{P} leads to a state S^N that has approximation ratio of at most $\frac{(\phi+1)^2}{\phi} \approx 4.24$.

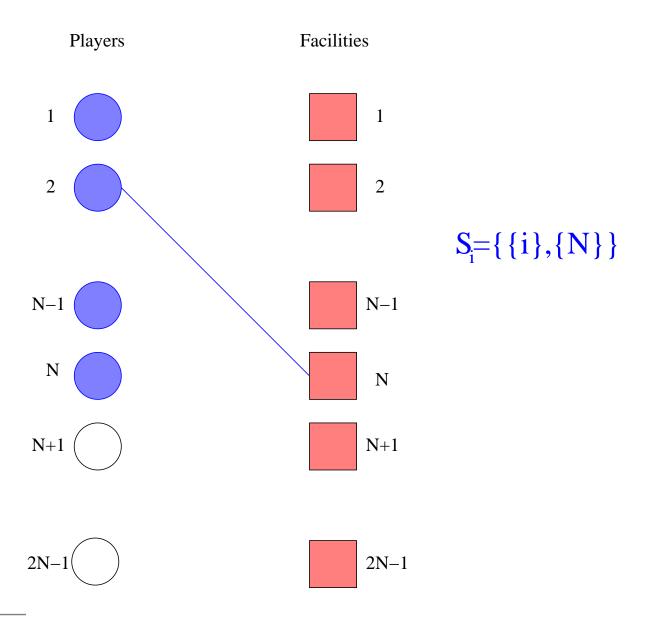
Lower Bound 3.08 for scheduling.
 [Suri, Tóth, Zhou,2004]

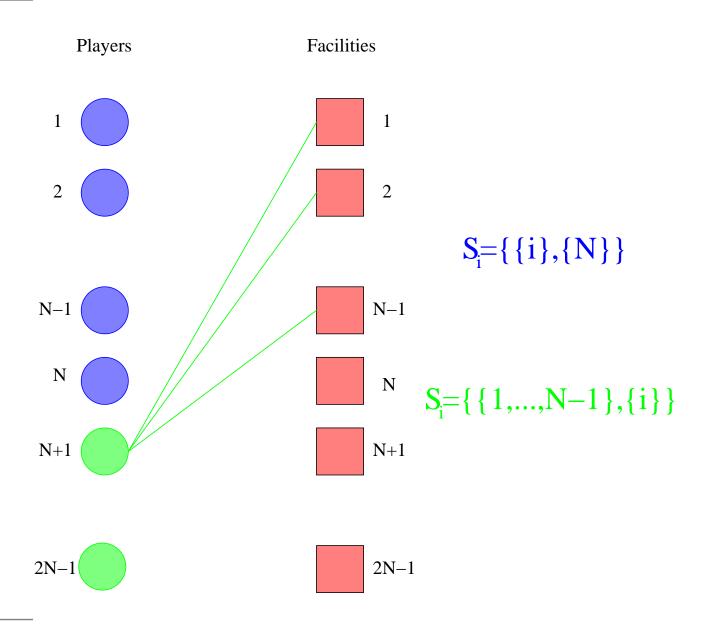
Linear Network Congestion Games - LBs

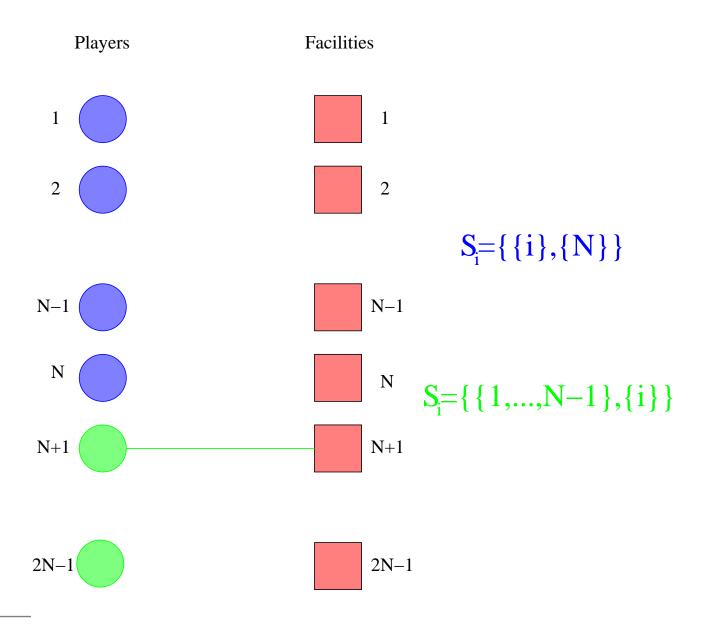
Theorem 3. For any N > 0, there exists an *N*-player instance of the unweighted congestion game, and an initial state S^0 and a one-round walk \mathcal{P} that results to an $\Omega(N)$ -approximate solution.

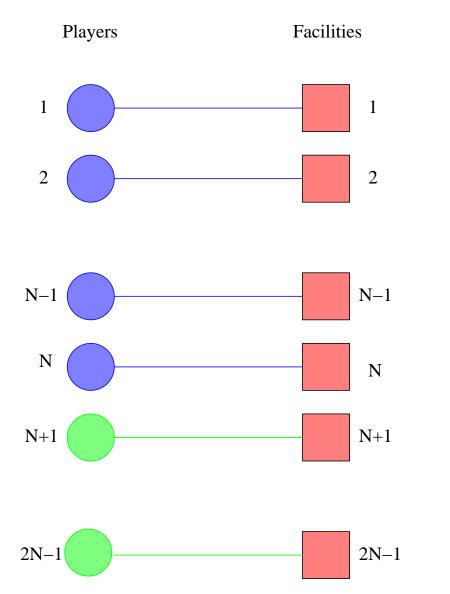


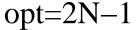


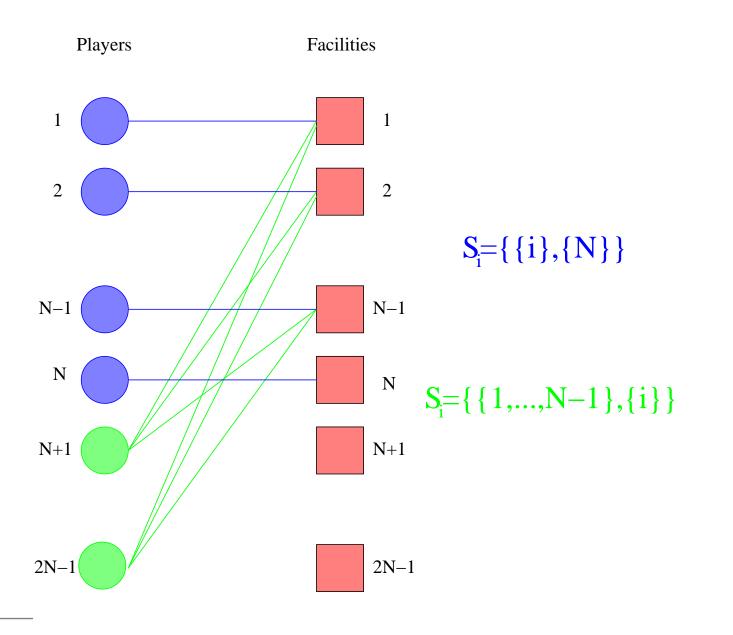


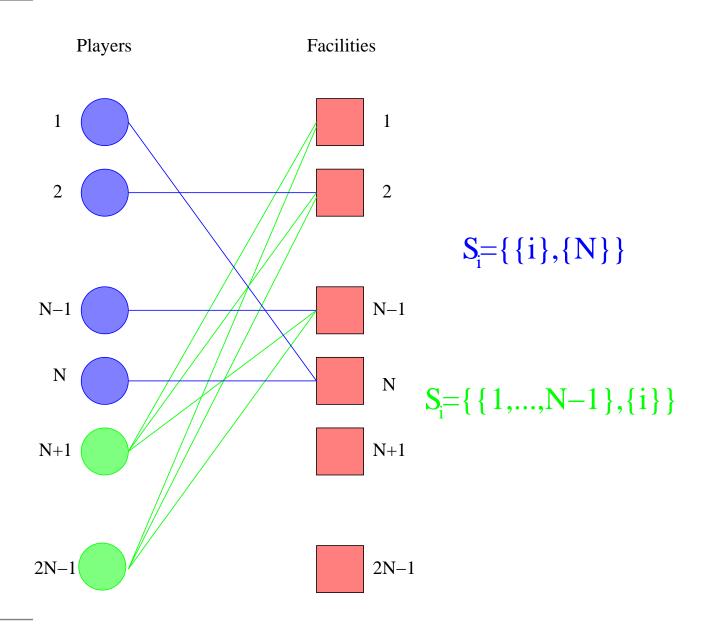


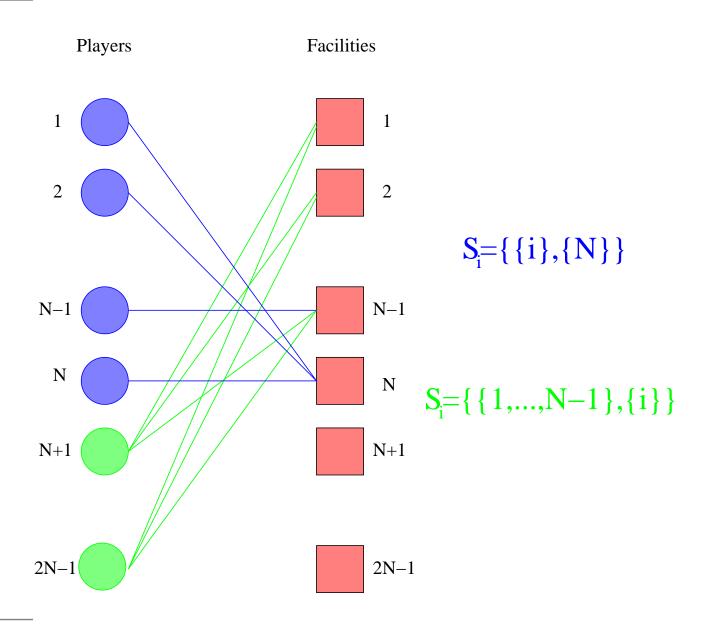


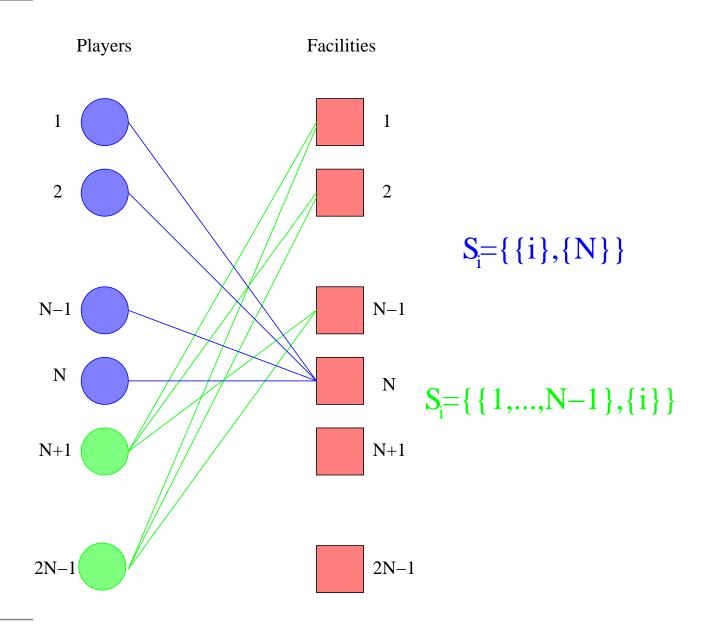


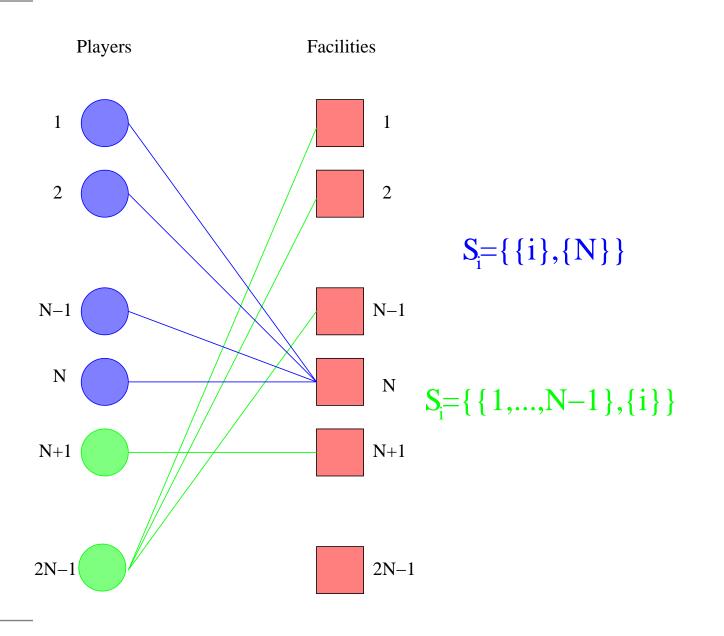


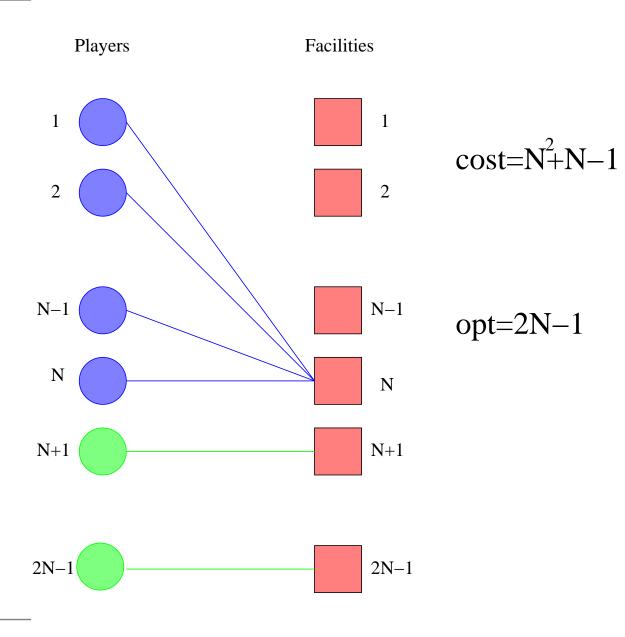




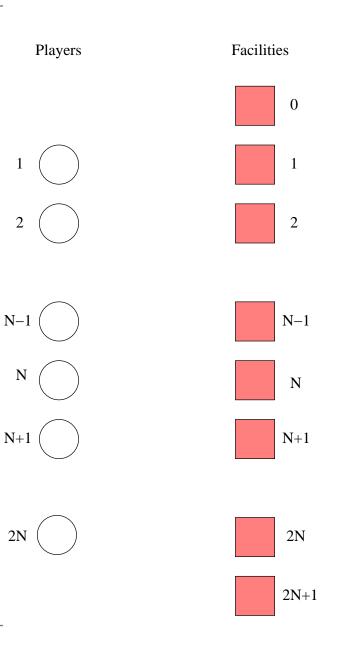


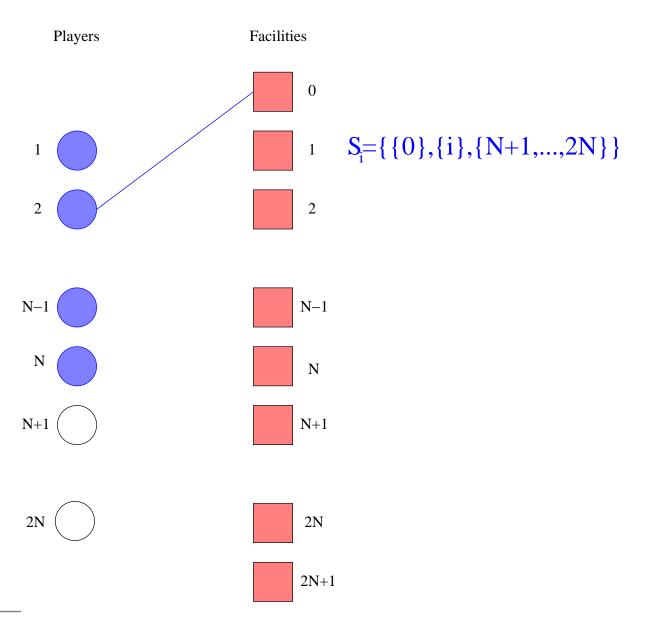


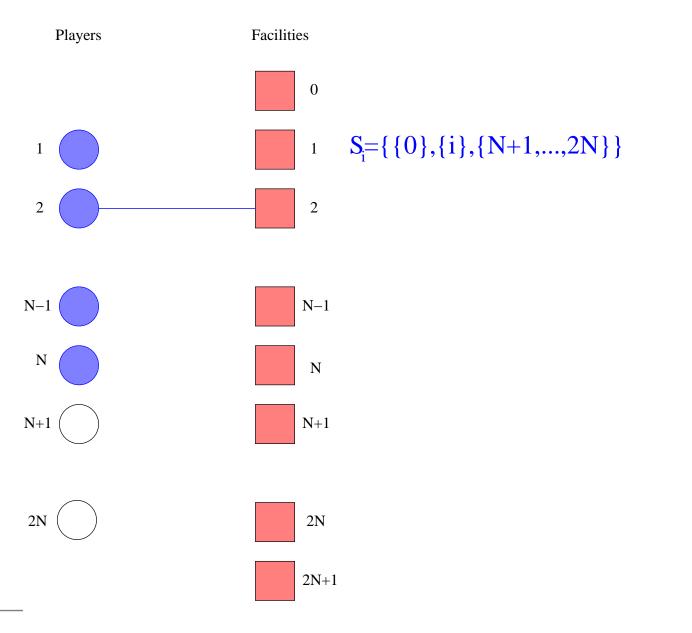


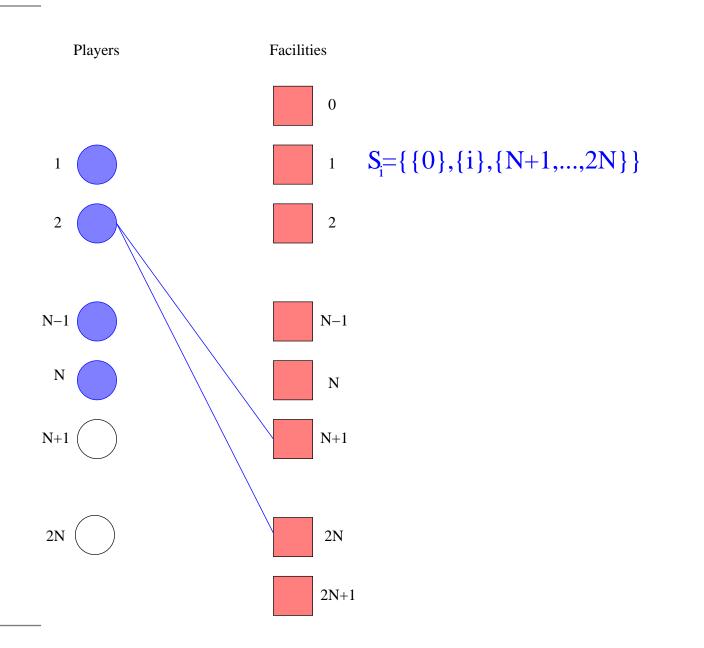


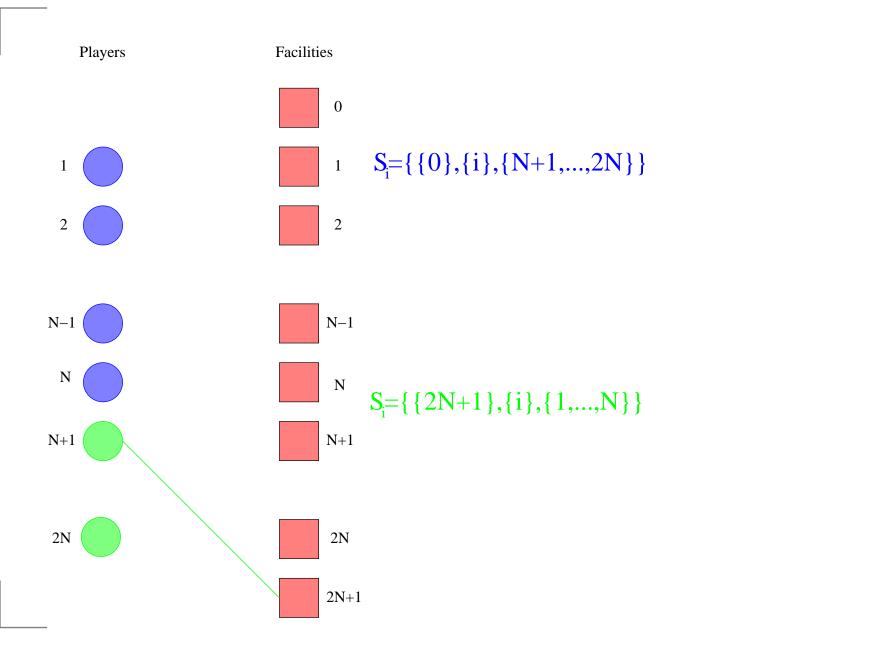
- **Theorem.** For any t > 0, and for any sufficiently large N > 0, there exists an *N*-player instance of the unweighted congestion game, an initial state S^0 , and an ordering σ of the players, such that starting from S^0 , after *t* rounds where the players play according to σ , the cost of the resulting allocation is a $(N/t)^{\epsilon}$ -approximation, where $\epsilon = 2^{-O(t)}$.
- **Theorem.** For any N > 0, there exists an *N*-player instance of the unweighted congestion game, and an initial state S^0 such that *for any* one-round walk \mathcal{P} starting from S^0 , the state at the end of \mathcal{P} is an $\Omega(N)$ -approximate solution.

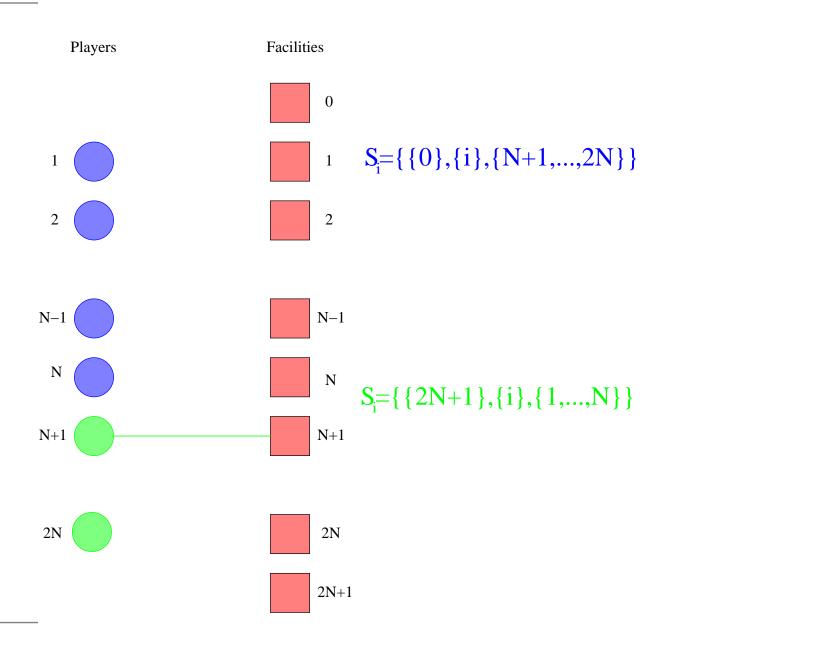


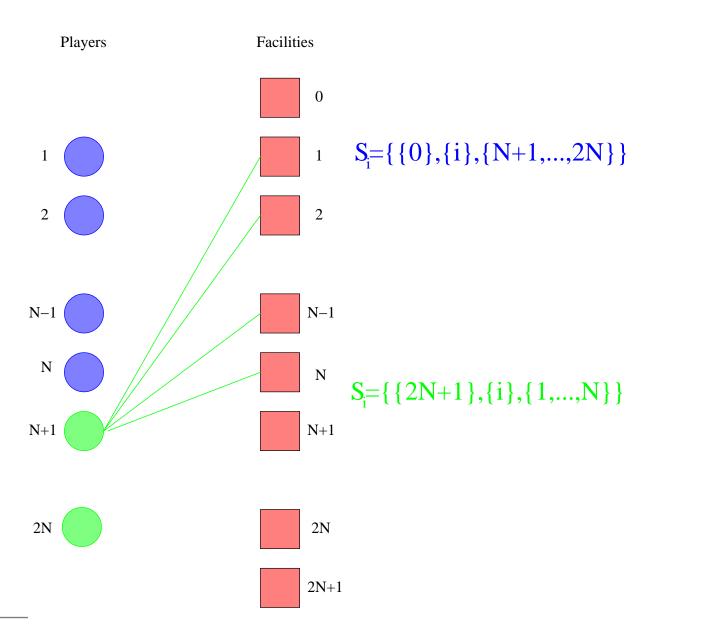


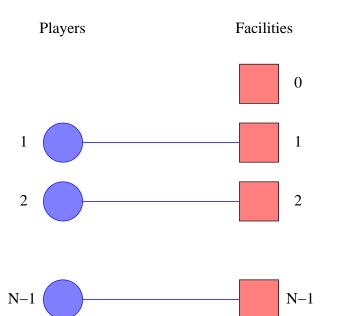


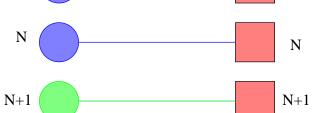






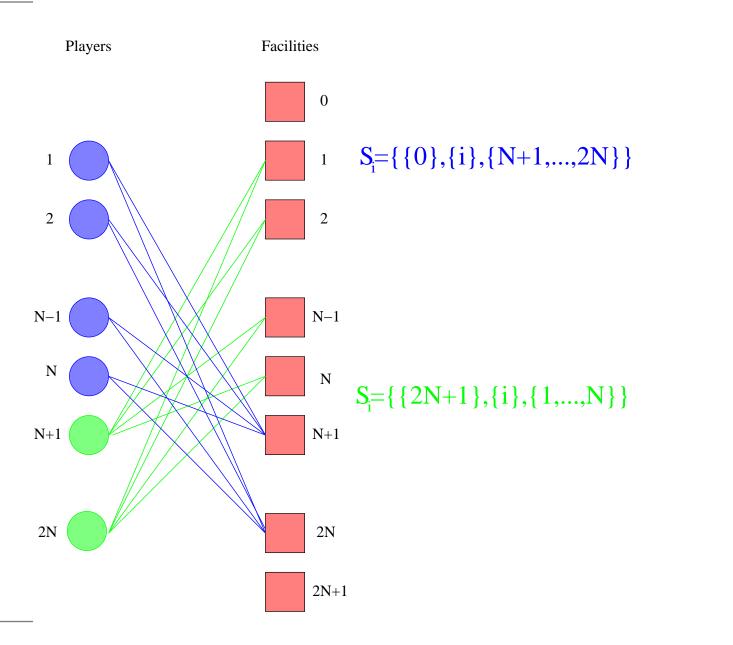


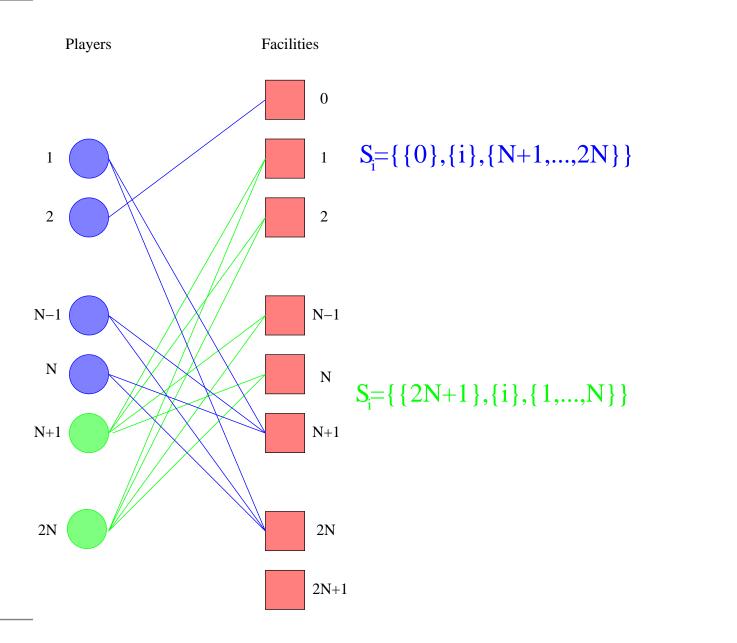


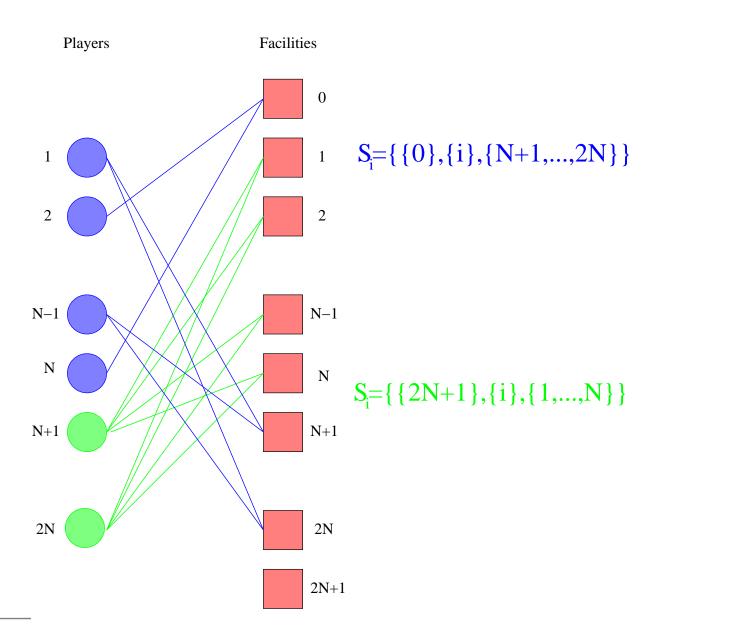


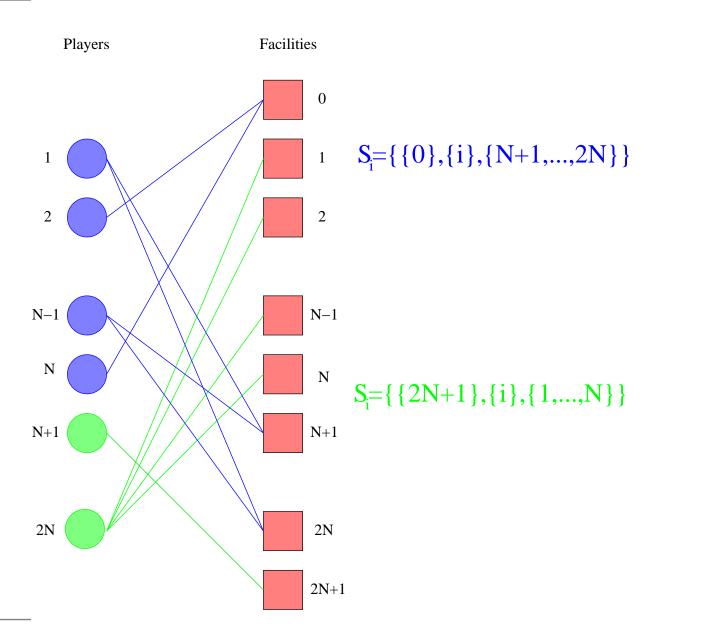
opt=2N

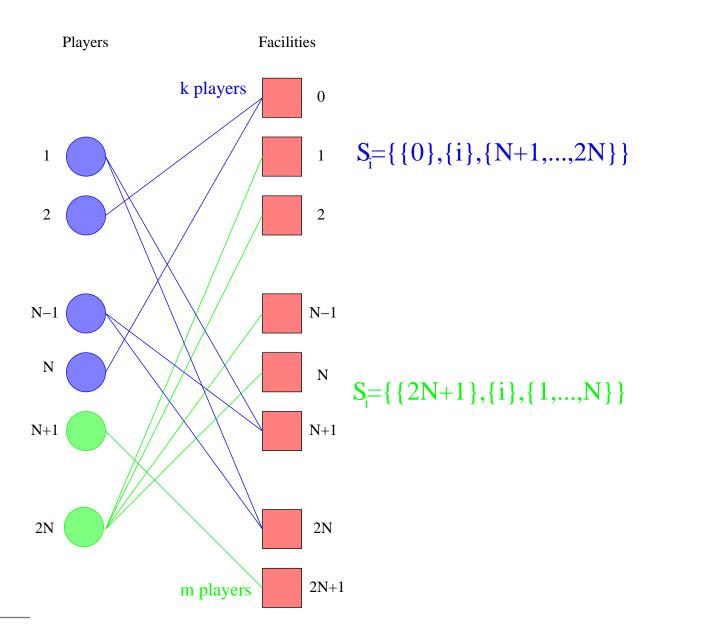
University of Washington, Computer Science Department - April, 2007 - p.25/44

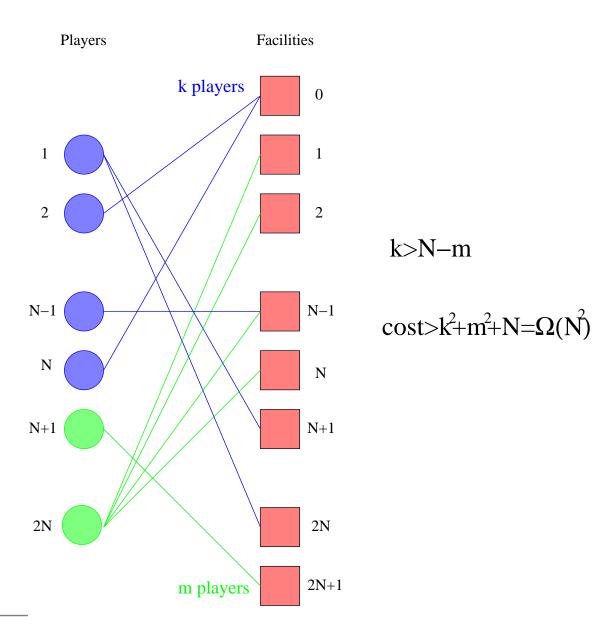












Questions

- 1. What do players converge to?
 - Find Potential Functions? Characterize Sink Equilibria?
- 2. Performance in Sink Equilibria?
 - Price of Sinking, Price of Anarchy?
- 3. Speed of Convergence to Sink Equilibria?
 - PLS-Complete?
- 4. Convergence to Approximate Solutions?
 - Deterministic and Random Walks?

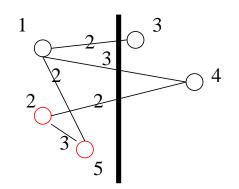
Rest of the Talk

- Cut Games: Convergence on Random and Determinist Best-response Paths.
- Valid-utility games

A Cut game: The Party Affiliation Game

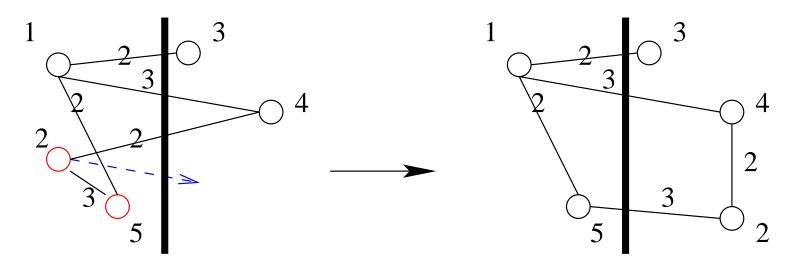
Out game:

- Players: Nodes of the graph.
- Player's strategy $\in \{1, -1\}$ (Republican or Democrat)
- An action profile corresponds to a cut.
- Payoff: Total Contribution in the cut.
- Change Party if you gain.



Cut Value: 7 2 and 5 are unhappy.

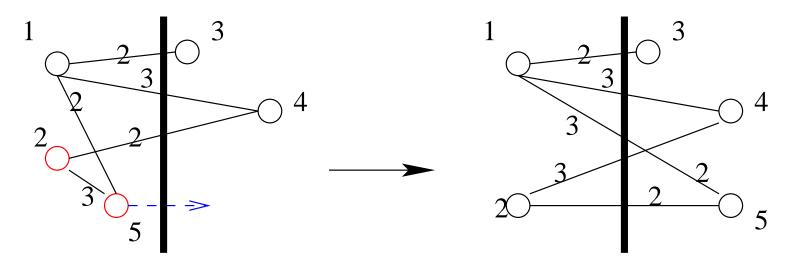
The Cut Game: Nash equilibria



Cut Value: 7 2 and 5 are unhappy.

Cut Value: 8 Pure Nash Equilibrium.

The Cut Game: Nash equilibria



Cut Value: 7 2 and 5 are unhappy.

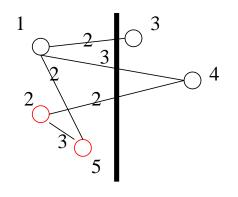
Cut Value: 12 The Optimum.

- Social Function:
 - The cut value.

Price of Anarchy for this instance: $\frac{12}{8} = 1.5$.

The Cut game

Out game:

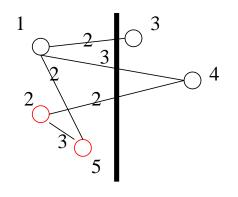


Cut Value: 7 2 and 5 are unhappy.

- Social Function:
 - The Cut Value
 - Total Happiness
- Price of anarchy: at most 2.
- Local search algorithm for Max-Cut!

The Cut game

Out game:



Cut Value: 7 2 and 5 are unhappy.

- Social Function:
 - The Cut Value
- Convergence:
 - Finding local optimum for Max-Cut is PLS-complete (Schaffer, Yannakakis [1991]).

Cut Game: Walks to Nash equilibria

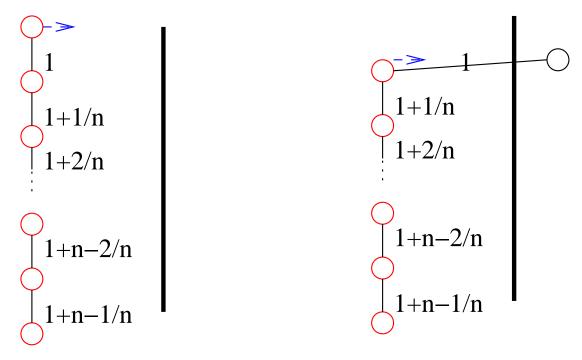
- Unweighted graphs After $O(n^2)$ steps, we converge to a Nash equilibrium.
- Weighted graphs: It is PLS-complete.
 - PLS-Complete problems and tight PLS reduction (Johnson, Papadimitriou, Yannakakis [1988]).
 - Tight PLS reduction from Max-Cut (Schaffer, Yannakakis [1991])
 - There are some states that are exponentially far from any Nash equilibrium.

Question: Are there long poor covering walks?

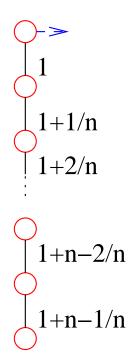
Cut Game: A Bad Example

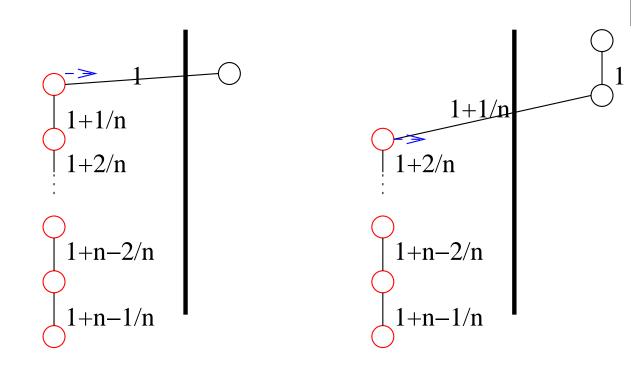
• Consider graph *G*, a line of *n* vertices. The weight of edges are $1, 1 + \frac{1}{n}, 1 + \frac{2}{n}, \dots, 1 + \frac{n-1}{n}$. Vertices are labelled $1, \dots, n$ throughout the line. Consider the round of best responses:

• Theorem: In the above example, the cut value after k rounds is $O(\frac{k}{n})$ of the optimum.

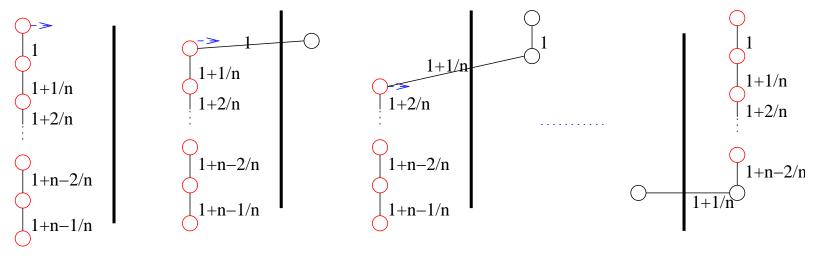


After one move.

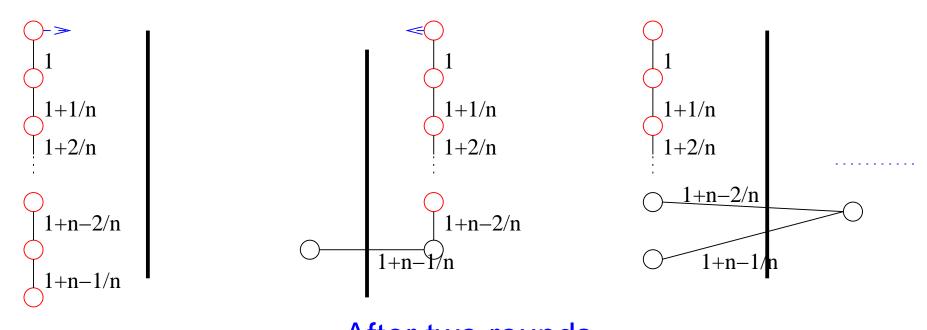




After two moves.



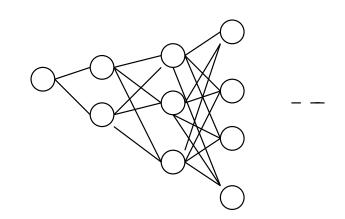
After *n* moves (one round)



After two rounds.

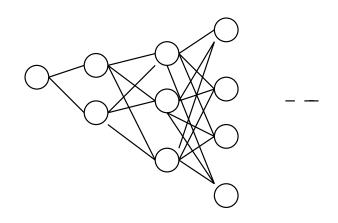
Unweighted Cut Game: A Bad Example

• Let graph *G* be the following bipartite graph with $V(G) = \bigcup_{i=1}^{t} \bigcup_{j=1}^{i} \{\{v_{i,j}\}\}, \text{ and } E(G) = \bigcup_{i=1}^{t-1} \bigcup_{j=1}^{i} \bigcup_{l=1}^{i+1} \{\{v_{i,j}, v_{i+1,l}\}\}.$



Unweighted Cut Game: A Bad Example

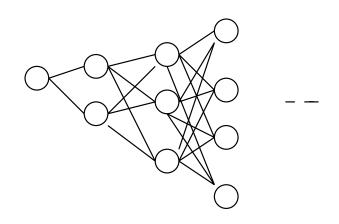
• Let graph *G* be the following bipartite graph with $V(G) = \bigcup_{i=1}^{t} \bigcup_{j=1}^{i} \{\{v_{i,j}\}\}, \text{ and } E(G) = \bigcup_{i=1}^{t-1} \bigcup_{j=1}^{i} \bigcup_{l=1}^{i+1} \{\{v_{i,j}, v_{i+1,l}\}\}.$



Theorem: In the above example, the cut value after k rounds is $O(\frac{k}{\sqrt{n}})$ of the optimum.

Unweighted Cut Game: A Bad Example

• Let graph *G* be the following bipartite graph with $V(G) = \bigcup_{i=1}^{t} \bigcup_{j=1}^{i} \{\{v_{i,j}\}\}, \text{ and } E(G) = \bigcup_{i=1}^{t-1} \bigcup_{j=1}^{i} \bigcup_{l=1}^{i+1} \{\{v_{i,j}, v_{i+1,l}\}\}.$



Theorem: In the above example, the cut value after k rounds is O(^k/_{√n}) of the optimum.
 In unweighted graphs, the value of the cut after an O(n)-covering walk is a constant-factor of the optimum_____
 Cut.

Random One-round walks

Theorem: (M., Sidiropoulos[2004]) The expected value of the cut after a random one-round path is at most $\frac{1}{8}$ of the optimum.

Random One-round walks

Theorem: (M., Sidiropoulos[2004]) The expected value of the cut after a random one-round path is at most $\frac{1}{8}$ of the optimum.

Proof Sketch: The sum of payoffs of nodes after their moves is $\frac{1}{2}$ -approximation. In a random ordering, with a constant probability a node occurs after $\frac{3}{4}$ of its neighbors. The expected contribution of a node in the cut is a constant-factor of its total weight.

Exponentially Long Poor Walks

• Theorem: (M., Sidiropoulos[2004]) There exists a weighted graph G = (V(G), E(G)), with $|V(G)| = \Theta(n)$, and a *k*-covering walk \mathcal{P} in the state graph, for some *k* exponentially large in *n*, such that the value of the cut at the end of \mathcal{P} , is at most O(1/n) of the optimum cut.

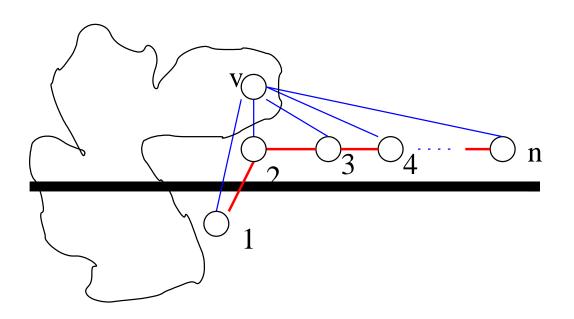
Exponentially Long Poor Walks

• Theorem: (M., Sidiropoulos[2004]) There exists a weighted graph G = (V(G), E(G)), with $|V(G)| = \Theta(n)$, and a *k*-covering walk \mathcal{P} in the state graph, for some *k* exponentially large in *n*, such that the value of the cut at the end of \mathcal{P} , is at most O(1/n) of the optimum cut.

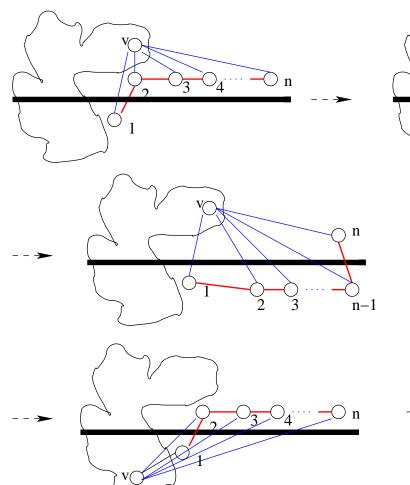
Proof Sketch:

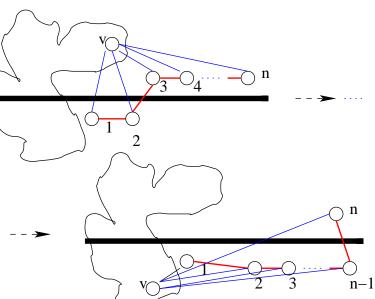
Use the example for the exponentially long paths to the Nash equilibrium in the cut game. Find a player, v, that moves exponentially many times. Add a line of n vertices to this graph and connect all the vertices to player v.

Poor Long Walk: Illustration



Poor Long Walk: Illustration





Mildly Greedy Players

A Player is 2-greedy, if she does not move if she cannot double her payoff.

Mildly Greedy Players

A Player is 2-greedy, if she does not move if she cannot double her payoff.

- Theorem:(M., Sidiropoulos[2004]) One round of selfish behavior of 2-greedy players converges to a constant-factor cut.
- Proof Idea: If a player moves it improves the value of the cut by a constant factor of its contribution in the cut.

Mildly Greedy Players

A Player is 2-greedy, if she does not move if she cannot double her payoff.

- Theorem:(M., Sidiropoulos[2004]) One round of selfish behavior of 2-greedy players converges to a constant-factor cut.
- Proof Idea: If a player moves it improves the value of the cut by a constant factor of its contribution in the cut.
- Message: Mildly Greedy Players converge faster.

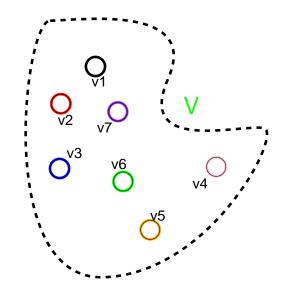
Questions

- 1. What do players converge to?
 - Find Potential Functions? Characterize Sink Equilibria?
- 2. Performance in Sink Equilibria?
 - Price of Sinking, Price of Anarchy?
- 3. Speed of Convergence to Sink Equilibria?
 - PLS-Complete?
- 4. Convergence to Approximate Solutions?
 - Deterministic and Random Walks?

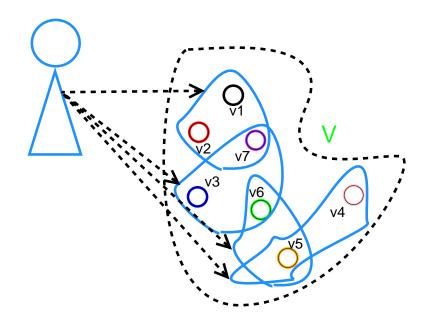
Rest of the Talk

- Valid-utility games: Price of Sinking.
- Valid-utility games: PLS-Completeness.

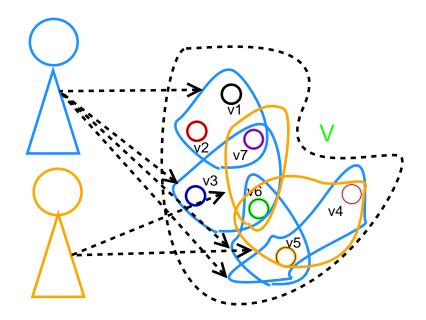
Strategy of each player is a subset of a groundset.



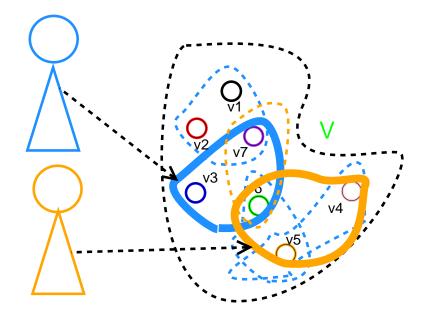
Strategy of each player is a subset of a groundset.



Strategy of each player is a subset of a groundset.



Strategy of each player is a subset of a groundset.



Submodular Social Function: Social Function is a submodular set function on the union of strategies of players.

- Strategy of each player is a subset of a groundset.
- Submodular Social Function: Social Function is a submodular set function on the union of strategies of players.
- The payoff of any player is at least the change that he makes in the social function by playing.

- Strategy of each player is a subset of a groundset.
- Submodular Social Function: Social Function is a submodular set function on the union of strategies of players.
- The payoff of any player is at least the change that he makes in the social function by playing.
- The sum of payoffs is at most the social function.

- Strategy of each player is a subset of a groundset.
- Submodular Social Function: Social Function is a submodular set function on the union of strategies of players.
- The payoff of any player is at least the change that he makes in the social function by playing.
- The sum of payoffs is at most the social function.
- In basic-utility games, the payoff is equal to the change that a player makes...

Examples

- Several examples, including the facility location game, market sharing games (Goemans, Li, M. Thottan), and a distributed caching game (Fleischer, Goemans, M. Sviridenko)
- Market Sharing Game (Goemans, Li, M., Thottan [2004])
 - Each market has a value.
 - The value of Market is divided equally between players.

Examples

- Several examples, including the facility location game, market sharing games (Goemans, Li, M. Thottan), and a distributed caching game (Fleischer, Goemans, M. Sviridenko)
- Market Sharing Game (Goemans, Li, M., Thottan [2004])
 - Each market has a value.
 - The value of Market is divided equally between players.

Valid-utility Games: Price of Anarchy

- Theorem:(Vetta[2002]) The price of anarchy (of a mixed Nash equilibrium) in valid-utility games is at most 2.
- Theorem:(Vetta[2002]) Pure Nash equilibria exists for basic-utility games and Nash dynamics converges to a Nash equilibrium.

Valid-utility Games: Price of Sinking

• Theorem: The price of sinking in valid-utility games is between n and n + 1.

Basic-Utility Games: Convergence

- Theorem: (M., Vetta[2004]) In basic-utility games, after one round of selfish behavior of players, they converge to a $\frac{1}{3}$ -optimal solution.
- Theorem: In basic-utility games, after a random walk of length $O(n \log n)$ of best responses of players, they converge to a $\frac{1}{2} \epsilon$ -optimal solution.

Basic-Utility Games: Convergence

- Theorem: (M., Vetta[2004]) In basic-utility games, after one round of selfish behavior of players, they converge to a $\frac{1}{3}$ -optimal solution.
- Theorem: In basic-utility games, after a random walk of length $O(n \log n)$ of best responses of players, they converge to a $\frac{1}{2} \epsilon$ -optimal solution.
- Theorem: (M., Vetta[2004]) In a market sharing game, after one round of selfish behavior of players, they converge to a $\frac{1}{\log(n)}$ -optimal solution and this is almost tight.

Basic-Utility Games: Convergence

- Theorem: (M., Vetta[2004]) In basic-utility games, after one round of selfish behavior of players, they converge to a $\frac{1}{3}$ -optimal solution.
- Theorem: In basic-utility games, after a random walk of length $O(n \log n)$ of best responses of players, they converge to a $\frac{1}{2} \epsilon$ -optimal solution.
- Theorem: (M., Vetta[2004]) In a market sharing game, after one round of selfish behavior of players, they converge to a $\frac{1}{\log(n)}$ -optimal solution and this is almost tight.

Exponential Convergence to Sink Eq.

- Theorem: Finding a state in the sink equilibrium of a valid-utility game is PLS-Complete.
- Theorem: There are states that are exponentially far from any state in a sink equilibrium.

Questions

- 1. What do players converge to?
 - Find Potential Functions? Characterize Sink Equilibria?
- 2. Performance in Sink Equilibria?
 - Price of Sinking, Price of Anarchy?
- 3. Speed of Convergence to Sink Equilibria?
 - PLS-Complete?
- 4. Convergence to Approximate Solutions?
 - Deterministic and Random Walks?
- 5. TAKE YOUR FAVORITE GAME and ANSWER THESE QUESTIONS.