
CSE599s Spring 2012 - Online Learning
Homework Exercise 3 - due 5/22/12

1. Strong convexity Strongly convex functions have a number of important properties
that make them particularly nice to use as regularizers. We investigate some of them
here. For all of these, assume the functions are from Rn → R, and strong convexity is
with respect to an arbitrary norm ‖ · ‖. Unless otherwise specified, assume the strong
convexity holds on some convex set W .

(a) Suppose f : Rn → R is σ-strongly convex on a convex set W (possibly Rn). Show
that f is strongly convex on any convex W ′ ⊆ W .

(b) Let f be σ-strongly convex, and let h be α-strongly-convex. Show that c(x) =
f(x) + h(x) is (σ + α)-strongly-convex. An important corollary is that if f is
σ-strong-convex and h is an arbitrary convex function, then their sum is also σ-
strongly-convex.

(c) Suppose f is 1-strongly-convex. Show that h(x) = αf(x) is α-strongly-convex for
α ∈ [0,∞).

(d) Let f be σ-strongly-convex on a convex setW . Show that f has a unique minimizer
w∗ ∈ W .

2. Online Gradient Descent with Strongly Convex Loss Functions Recall the
analysis of the Online Gradient Descent algorithm (see notes for lecture 5)

(a) Prove that if the loss functions ft are all σ-strongly convex then regret is upper
bounded by
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and conclude that

T∑
t=1

ft(wt)−
T∑
t=1

ft(w
?) ≤ G2

H
(1 + log T ) .

Note that we obtain a logarithmic bound on regret, which is much smaller than a
square-root bound.
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3. Implementing FTRL with Proximal and L1 Regularization We consider the
FTRL algorithm with adaptive proximal regularization and an L1 penalty to indroduce
sparsity. We consider the unconstrained problem, so the update is

wt+1 = arg minw∈Rn g1:t · w + tλ‖w‖1 +
t∑

s=1

σs
2
‖w − ws‖22

Here, the σs in R+ give the strengh of each incremental regularization function, and
λ ≥ 0 gives the strength of the per-round L1 penalty.

(a) Consider the 1D optimization problem

w∗ = arg minw∈R
a

2
w2 + bw + c‖w‖1,

where a, b, c ∈ R are constants and a, c ≥ 0. Derive a closed-form solution for w∗.
Hint: Consider the subdifferential of this objective, and recall that if 0 ∈ ∂f(w∗)
then w∗ is a minimizer. Your closed-form solution may still contain cases.

(b) Suppose that the σt are chosen only as a function of t, for example so σ1:t =
√
t,

corresponding to a learning rate of 1√
t
. Write pseudocode for the algorithm, using

an implementation that only requires storing a single vector in Rn. For simplicity,
structure your code like this:

/*TODO: Define variables for the state of the algorithm*/
for round t = 1, 2, . . . do

Observe gradient gt
/*TODO: Implement the update.*/
/*TODO: Compute and output wt+1*/

end for
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