CSE599s Spring 2012 - Online Learning Homework Exercise 3 - due 5/22/12

1. Strong convexity Strongly convex functions have a number of important properties that make them particularly nice to use as regularizers. We investigate some of them here. For all of these, assume the functions are from $\mathbb{R}^{n} \rightarrow \mathbb{R}$, and strong convexity is with respect to an arbitrary norm $\|\cdot\|$. Unless otherwise specified, assume the strong convexity holds on some convex set \mathcal{W}.
(a) Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is σ-strongly convex on a convex set \mathcal{W} (possibly \mathbb{R}^{n}). Show that f is strongly convex on any convex $\mathcal{W}^{\prime} \subseteq \mathcal{W}$.
(b) Let f be σ-strongly convex, and let h be α-strongly-convex. Show that $c(x)=$ $f(x)+h(x)$ is $(\sigma+\alpha)$-strongly-convex. An important corollary is that if f is σ-strong-convex and h is an arbitrary convex function, then their sum is also σ -strongly-convex.
(c) Suppose f is 1-strongly-convex. Show that $h(x)=\alpha f(x)$ is α-strongly-convex for $\alpha \in[0, \infty)$.
(d) Let f be σ-strongly-convex on a convex set \mathcal{W}. Show that f has a unique minimizer $w^{*} \in \mathcal{W}$.
2. Online Gradient Descent with Strongly Convex Loss Functions Recall the analysis of the Online Gradient Descent algorithm (see notes for lecture 5)
(a) Prove that if the loss functions f_{t} are all σ-strongly convex then regret is upper bounded by

$$
\frac{1}{2}\left\|w^{\star}\right\|^{2}\left(\frac{1}{\eta_{t}}-\sigma\right)+\frac{1}{2} \sum_{t=2}^{T}\left\|w_{t}-w^{\star}\right\|^{2}\left(\frac{1}{\eta_{t}}-\frac{1}{\eta_{t-1}}-\sigma\right)+\frac{G^{2}}{2} \sum_{t=1}^{T} \eta_{t+1}
$$

(b) Set $\eta_{t}=\frac{1}{\sigma t}$ and conclude that

$$
\sum_{t=1}^{T} f_{t}\left(w_{t}\right)-\sum_{t=1}^{T} f_{t}\left(w^{\star}\right) \leq \frac{G^{2}}{H}(1+\log T)
$$

Note that we obtain a logarithmic bound on regret, which is much smaller than a square-root bound.
3. Implementing FTRL with Proximal and L1 Regularization We consider the FTRL algorithm with adaptive proximal regularization and an L_{1} penalty to indroduce sparsity. We consider the unconstrained problem, so the update is

$$
w_{t+1}=\arg \min _{w \in \mathbb{R}^{n}} g_{1: t} \cdot w+t \lambda\|w\|_{1}+\sum_{s=1}^{t} \frac{\sigma_{s}}{2}\left\|w-w_{s}\right\|_{2}^{2}
$$

Here, the σ_{s} in \mathbb{R}^{+}give the strengh of each incremental regularization function, and $\lambda \geq 0$ gives the strength of the per-round L_{1} penalty.
(a) Consider the $1 D$ optimization problem

$$
w^{*}=\arg \min _{w \in \mathbb{R}} \frac{a}{2} w^{2}+b w+c\|w\|_{1},
$$

where $a, b, c \in \mathbb{R}$ are constants and $a, c \geq 0$. Derive a closed-form solution for w^{*}. Hint: Consider the subdifferential of this objective, and recall that if $0 \in \partial f\left(w^{*}\right)$ then w^{*} is a minimizer. Your closed-form solution may still contain cases.
(b) Suppose that the σ_{t} are chosen only as a function of t, for example so $\sigma_{1: t}=\sqrt{t}$, corresponding to a learning rate of $\frac{1}{\sqrt{t}}$. Write pseudocode for the algorithm, using an implementation that only requires storing a single vector in \mathbb{R}^{n}. For simplicity, structure your code like this:

```
/*TODO: Define variables for the state of the algorithm*/
for round t=1,2,\ldots}\mathrm{ do
    Observe gradient g
    /*TODO: Implement the update.*/
    /*TODO: Compute and output w}\mp@subsup{w}{t+1}{*}
end for
```

