CSE599s Spring 2012 - Online Learning
Homework Exercise 3 - due 5/22/12

1. Strong convexity Strongly convex functions have a number of important properties
that make them particularly nice to use as regularizers. We investigate some of them
here. For all of these, assume the functions are from R” — R, and strong convexity is
with respect to an arbitrary norm || - ||. Unless otherwise specified, assume the strong
convexity holds on some convex set W.

(a) Suppose f: R" — R is o-strongly convex on a convex set W (possibly R™). Show
that f is strongly convex on any convex W' C W.

(b) Let f be o-strongly convex, and let h be a-strongly-convex. Show that c(z) =
f(z) + h(z) is (0 + a)-strongly-convex. An important corollary is that if f is
o-strong-convex and h is an arbitrary convex function, then their sum is also o-
strongly-convex.

(¢) Suppose f is 1-strongly-convex. Show that h(z) = af(z) is a-strongly-convex for
a € [0,00).

(d) Let f be o-strongly-convex on a convex set W. Show that f has a unique minimizer
w* e W.

2. Online Gradient Descent with Strongly Convex Loss Functions Recall the
analysis of the Online Gradient Descent algorithm (see notes for lecture 5)

(a) Prove that if the loss functions f; are all o-strongly convex then regret is upper
bounded by
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(b) Set n; = % and conclude that
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Note that we obtain a logarithmic bound on regret, which is much smaller than a
square-root bound.



3. Implementing FTRL with Proximal and L1 Regularization We consider the
FTRL algorithm with adaptive proximal regularization and an L; penalty to indroduce
sparsity. We consider the unconstrained problem, so the update is
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Here, the o, in RT give the strengh of each incremental regularization function, and
A > 0 gives the strength of the per-round L; penalty.

(a) Consider the 1D optimization problem
* : a o
W’ = arg min,eg 5w + bw + cllw||;,

where a, b, c € R are constants and a,c > 0. Derive a closed-form solution for w*.
Hint: Consider the subdifferential of this objective, and recall that if 0 € Jf(w*)
then w* is a minimizer. Your closed-form solution may still contain cases.

(b) Suppose that the o, are chosen only as a function of ¢, for example so 14 = /1,
corresponding to a learning rate of \/Lz Write pseudocode for the algorithm, using
an implementation that only requires storing a single vector in R™. For simplicity,
structure your code like this:

/*TODO: Define variables for the state of the algorithm™*/
for round t =1,2,... do

Observe gradient g,

/*TODO: Implement the update.*/

/*¥TODO: Compute and output wy1*/
end for



