CSE599s Spring 2012 - Online Learning Homework Exercise 3 - due 5/22/12

- 1. Strong convexity Strongly convex functions have a number of important properties that make them particularly nice to use as regularizers. We investigate some of them here. For all of these, assume the functions are from $\mathbb{R}^n \to \mathbb{R}$, and strong convexity is with respect to an arbitrary norm $\|\cdot\|$. Unless otherwise specified, assume the strong convexity holds on some convex set \mathcal{W} .
 - (a) Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is σ -strongly convex on a convex set \mathcal{W} (possibly \mathbb{R}^n). Show that f is strongly convex on any convex $\mathcal{W}' \subseteq \mathcal{W}$.
 - (b) Let f be σ -strongly convex, and let h be α -strongly-convex. Show that c(x) = f(x) + h(x) is $(\sigma + \alpha)$ -strongly-convex. An important corollary is that if f is σ -strong-convex and h is an arbitrary convex function, then their sum is also σ -strongly-convex.
 - (c) Suppose f is 1-strongly-convex. Show that $h(x) = \alpha f(x)$ is α -strongly-convex for $\alpha \in [0, \infty)$.
 - (d) Let f be σ -strongly-convex on a convex set \mathcal{W} . Show that f has a unique minimizer $w^* \in \mathcal{W}$.
- 2. Online Gradient Descent with Strongly Convex Loss Functions Recall the analysis of the Online Gradient Descent algorithm (see notes for lecture 5)
 - (a) Prove that if the loss functions f_t are all σ -strongly convex then regret is upper bounded by

$$\frac{1}{2} \|w^{\star}\|^{2} \left(\frac{1}{\eta_{t}} - \sigma\right) + \frac{1}{2} \sum_{t=2}^{T} \|w_{t} - w^{\star}\|^{2} \left(\frac{1}{\eta_{t}} - \frac{1}{\eta_{t-1}} - \sigma\right) + \frac{G^{2}}{2} \sum_{t=1}^{T} \eta_{t+1} .$$

(b) Set $\eta_t = \frac{1}{\sigma t}$ and conclude that

$$\sum_{t=1}^{T} f_t(w_t) - \sum_{t=1}^{T} f_t(w^*) \leq \frac{G^2}{H} (1 + \log T) .$$

Note that we obtain a *logarithmic* bound on regret, which is much smaller than a *square-root* bound.

3. Implementing FTRL with Proximal and L1 Regularization We consider the FTRL algorithm with adaptive proximal regularization and an L_1 penalty to indroduce sparsity. We consider the unconstrained problem, so the update is

$$w_{t+1} = \arg\min_{w \in \mathbb{R}^n} g_{1:t} \cdot w + t\lambda \|w\|_1 + \sum_{s=1}^t \frac{\sigma_s}{2} \|w - w_s\|_2^2$$

Here, the σ_s in \mathbb{R}^+ give the strength of each incremental regularization function, and $\lambda \geq 0$ gives the strength of the per-round L_1 penalty.

(a) Consider the 1D optimization problem

$$w^* = \arg\min_{w \in \mathbb{R}} \frac{a}{2}w^2 + bw + c||w||_1,$$

where $a, b, c \in \mathbb{R}$ are constants and $a, c \geq 0$. Derive a closed-form solution for w^* . Hint: Consider the subdifferential of this objective, and recall that if $0 \in \partial f(w^*)$ then w^* is a minimizer. Your closed-form solution may still contain cases.

(b) Suppose that the σ_t are chosen only as a function of t, for example so $\sigma_{1:t} = \sqrt{t}$, corresponding to a learning rate of $\frac{1}{\sqrt{t}}$. Write pseudocode for the algorithm, using an implementation that only requires storing a single vector in \mathbb{R}^n . For simplicity, structure your code like this:

/*TODO: Define variables for the state of the algorithm*/ for round t = 1, 2, ... do Observe gradient g_t /*TODO: Implement the update.*/ /*TODO: Compute and output w_{t+1} */ end for