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1 Setup and Algorithm

We continue our investigation of online learning with partial information by considering the problem of
bandits with expert advice. Instead of comparing against the best single action, we instead compare against
the advice of the best expert. We think of an expert as a probability distribution over actions.1 The setup is
as follows:

• A actions {aj},

• M experts {ei} such that at time t, expert i gives probability distribution et,i over actions (i.e. et,i(a)
is the probability with which expert i thinks action a is best at time t).

Given a loss vector `t on actions, we can in turn compute a loss vector gt on experts by calculating their
expected loss. Namely,

gt,i = Ea∼et,i [`t(a)] = et,i · `t.

Our goal is to perform well against the best expert, a harder (and more reasonable) task than performing
well against a single action. Note, however, that by best expert we mean the best sequence of probability
distributions {et,i}t. Depending on the setting, it is possible that our experts are themselves running online
algorithms, in fact, they may be conditioning on our behavior! However, we cannot compare against other
possible runs of their algorithms – what we can compare against is their actual behavior, which is captured
by these probability distributions.

Clearly, given a loss vector on experts, we can apply algorithms we have seen in the past, such as Follow
the Regularized Leader, where the “leader” that we follow is an expert instead of an action. This bounds
regret against an expert. However, recall that this algorithm is for the full information case where we have
the full loss vector ` (and hence full loss vector g). In our case, as with all bandit settings, at each time
step we choose a single action a∗t , and only observe the loss of that one action `t(a∗t ). Thus, we will have
to use an additional trick (similar to that of Lecture 12) to estimate ˜̀

t, and g̃t for use in our analysis. In
summary, we will run the exponentiated gradient (EG) algorithm (i.e. multiplicative weight updates) on
f̃t(w) = g̃t · w. The key advantage of EXP4 (as opposed to just running EXP3 on the experts) is that by
observing the outcome of a single action we may be able to gain information about multiple experts.

1.1 EXP4∗

We will analyze EXP4, however use a different analysis which will yield a slightly stronger result, and hence
add the ∗ for clarity. The algorithm will maintain a probability vector over experts, and in each round will

1For computational tractability, we may make assumptions about finite support similar to our assumptions about a finite action
space, though there is similar work considered for continuous space models.
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choose an expert to follow, and then chose an action from the probability distribution that expert suggests.
After observing the loss of that action, an estimate of the loss vectors over both actions and experts is
updated, and a new probability distribution over experts is computed. The details for round t are as follows:

• Let wt,i be the probability with which we follow expert i in this round, defined as

wt,i = exp(−g̃1:t−1,i)/Z

where Z =
∑

i exp(−g̃1:t−1,i) is a normalizing factor.

• Sample expert i∗t ∼ wt, and action a∗t ∼ et,i∗t . Equivalently, consider the probability distribution such
that pt(a) =

∑
iwt,iet,i(a) and sample a∗t ∼ p.

• Play a∗t and observe `t(a∗t ) (recall that this loss is chosen by the adversary).

• Update our unbiased estimator for `t:

˜̀
t(a) =

{
`t(a∗t )
pt(a∗t )

if a = a∗t ,
0 otherwise.

• Update our unbiased estimator for gt:

g̃t,i = Ea∼et,i [
˜̀
t(a)] = et,i · `t =

et,i(a
∗
t )`t(a

∗
t )

pt(a∗t )
.

Recall that an unbiased estimator simply means that the expected value of the estimator equals the true value
of the value being estimated. This is easy to check for every coordinate of ˜̀and g̃.

2 Regret Analysis

As in previous lectures, we assume |`t(a)| ≤ G for all a, t and let g1:T,i =
∑T

t=1 gt,i. We can view our
algorithm as internally running the EG algorithm (FTRL with entropic regularization) in the full-information
setting against loss vectors g̃t. This algorithm guarantees

Regret(T ) ≤
T∑
t=1

wtgt − g1:T,i∗ ≤
1

η
log(M) +

η

2

∑
t,i

wt,ig
2
t,i. (1)

This inequality was derived in Lecture 12. The inequality considers the true loss of an expert g – however,
we only have an estimate of this loss. We proceed by calculating the expected bound on the regret using our
unbiased estimator g̃.

First, fix some t, and note that

E
[
g̃2t,i|wt

]
=

∑
a

pt(a)

(
et,i(a)`t(a)

pt(a)

)2

≤
∑
a

et,i(a)
2G2

pt(a)
.
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Now, recall that pt(a) =
∑

iwt,iet,i(a), and let st(a) = maxi et,i(a) and St =
∑

a st(a). Then, by using
these definitions and exchanging the order of summation, we get

E

[∑
i

wt,ig̃
2
t,i|wt

]
=

∑
i

wt,i

∑
a

et,i(a)
2G2

pt(a)

≤ G2
∑
a

∑
i

wt,i
et,i(a)st(a)∑
iwt,iet,i(a)

= G2
∑
a

st(a)

∑
iwt,iet,i(a)∑
iwt,iet,i(a)

≤ G2
∑
a

st(a) ≤ G2St.

Note the above holds for all t, and let S = maxt St. Thus, our overall expected regret is bounded by

E

[
1

η
logM +

η

2

∑
t

∑
i

wt,ig̃
2
t,i|wt

]
≤ 1

η
logM +

η

2
G2
∑
t

St

≤ 1

η
logM +

η

2
G2TS.

This is minimized for

η =

√
2 logM

G
√
TS

,

which yields the following expected regret bound:

E[Regret] ≤ G
√

1

2
TS logM.

2.1 Comparison to Other Algorithms

Recall that if we had full information, we could treat the experts as actions and could get a regret bound of

O(
√
T logM.

In the bandit setting, running EXP3 on experts (i.e. we only update the loss of the selected expert), as in
Lecture 12, we get a regret bound of

O(
√
TM logM.

The original analysis of EXP4, which we have not seen in class, yields a regret bound of

O(
√
TA logM).

So how do we measure up? From above, we see that our regret is

O(
√
TS logM),

so it depends on the value of S. However, first note that since et,i(a) ≤ 1 for all t, i, then for t∗ = argmaxtSt,

S = St∗ =
∑
a

max
i
et∗,i(a) ≤ A.
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Additionally, since et∗,i is a probability distribution over a,

S = St∗ ≤
∑
a

∑
i

et∗,i(a) =
∑
i

∑
a

et∗,i(a) =M.

Hence, this bound is no worse than that of either EXP3 or the original analysis of EXP4. In fact, it can be
much better. Assume, for example, that we know that all the experts place positive probability on at most
K different actions on any given round. Then S ≤ K. Alternately, assume that all experts choose the same
probability at every time step. Then S = 1 2.

The key difference between our analysis of EXP4∗ and the original analysis EXP4 is that we work in
loss space wheras the original is done in reward space. The fact that we are in loss space means that we are
always dealing with nonnegative numbers, which is necessary in the analysis in Lecture 12 used to attain
Equation 1 used here.

3 Further Discussion

Recall that we are analyzing regret; adding experts may increase regret because we have a larger search
space. Additionally adding good experts means that we are comparing to something better, but this may still
increase regret. However, adding good experts also has the benefit of potentially decreasing our actual loss
– we can learn from this good expert and end up with a better objective performance.

Keep in mind throughout regret analysis that our goal is to compare against the best reasonable alterna-
tive, and we measure our success accordingly. The key observation one should find in this discussion is that,
as always, one should choose their experts based on the particular problem. The problem should lead us to
a reasonable guess as to the type of expert that could behave well, and we typically use the smallest class of
experts that contain this type.

2Of course, in this case our regret is 0 so the bound could be improved, but this at least shows that this analysis can significantly
improve over prior work
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