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The Multi-armed Bandit Problem
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1 Model for learning with Expert Advice

Recall the problem of learning with expert advice. Let N be the number experts. The Player (our online

learning algorithm) maintains a probability distribution wt = {wt,i}i=1,...,N , wt,i ≥ 0, and
∑N
i=1 wt,i = 1.

On each round,

1. Player randomly picks expert It ∼ wt.

2. Adversary picks loss gt ∈ [0, G]N . gt = {gt,i}Ni=1 where gt,i is the loss associated with following the
advice from expert i.

3. Player suffers loss gt,It .

Since the player adopts a random strategy, we cares about the expected loss per time: ft = E[gt,It ] =∑
i wt,igt,i. The goal of the player is is to keep as small as possible the regret with respect to a single fixed

distribution w?:

Regret(T ) =

T∑
t=1

wt · gt −
∑
t

w? · gt (1)

Consider the normalized Exponentiated Gradient algorithm: The above algorithm is equivalent to Follow

Algorithm 1 Normalized Exponentiated Gradient(EG)

Choose η > 0
Inistialize w1 = (1/N, . . . , 1/N)

Update rule: ∀i, wt+1,i =
exp(−ηg1:t,i)∑N

j=1 exp(−ηg1:t,j)
=

wt,i exp(−ηgt,i)∑N
j=1 wt,j exp(−ηgt,j)

The Regularized Leader (FTRL) algorithm with entropic regularization R(w) = 1/η
∑
i wi log(wi), and

enjoys a regret bound

Regret(T ) ≤ ηG2T +
log(N)

η
(2)

where ‖gt‖∞ ≤ G. In particular, setting η =

√
log(n)

G
√
2T

, we have Regret(T ) ≤ G
√

2T log(N). The entropic

regularization used in the above algorithm is 1/η-strongly convex with respect to the l1-norm.

2 The Multi-armed Bandit Problem

In the multi-armed bandit problem, there are N slots (or experts) at a rigged casino, and on each online
round the player

1. random randomly chooses slot It ∼ wt

2. suffers a loss gt,It
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The vector gt = {gt,i} ∈ [0, G]N associates a loss for each of the slot. But the player only gets to see the cost
of the slot it chooses. This problem is similar to the above learning with expert advice. The only difference is
that the player does not get to see the cost of experts he didn’t pick. Nothing is assumed about the sequence
of vectors g1, . . . ,gT .

The problem nicely captures the exploration-exploitation tradeoff. On one hand, the play would like to
choose the slot which he believe has the lowest cost based on previous rounds. On the other hand, it may
be better to explore other arms and find the arms with smaller losses.

To approach this multi-armed bandit problem, we use the exponentiated gradient (EG) algorithm de-
scribed in the previous section. However, the player doesn’t have access to full information of gt, he only
sees the value gt,It . The trick is the estimate gt using the fact that the player plays randomly. We define
the random vector g̃t:

g̃t,i =

{
gt,i/wt,i, i = It

0. otherwise
(3)

We indeed have that g̃t is an unbiased estimator of the gt because

E[g̃t,i|wt] = E[g̃t,i|g1,g2, . . . ,gt−1] =

N∑
j=1

g̃t,iwt,j = gt,i. (4)

We update wt using the update rule of the EG algorithm. The resulting algorithm is given below The above

Algorithm 2 Multi-Armed Bandit Algorithm (EXP3 [1])

Input parameter η ∈ [0, 1],
Initialize: w1 = (1/N, . . . , 1/N)
for t = 1, 2, . . . do

pick It ∼ wt and suffer gt,It
Update wt+1,i = wt,i exp(−ηg̃t,i)/

∑N
j=1 wt,j exp(−ηg̃t,j)

end for

multi-armed bandit algorithm enjoys the same regret bound as in EG algorithm: Regret(T ) ≤ ηG̃2T + log(N)
η

where ‖g̃t‖∞ ≤ G̃. Note that since wt,i ∈ [0, 1] could be arbitrary small, we have unbounded G̃, thus unbound
regret.

To obtain a better regret bound for the normalized EG algorithm, we first defines

1

η
log

N∑
i=1

wt,i exp(−ηgt,i) = ?t (5)

Note that, we can telescope ?:

?t =
1

η
log

N∑
i=1

exp(ηg1:t−1,i)∑
j exp(−ηg1:t−1,j)

exp(−ηgt,i) (6)

=
1

η
log

N∑
i=1

exp(−ηg1:t,i)−
1

η
log

N∑
i=1

exp(−ηg1:t−1,i). (7)
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Using inequalities log x ≤ x− 1 and exp(−x) ≤ 1− x+ x2/2 for x > 0, we also have

?t =
1

η
log

N∑
i=1

wt,i exp(−ηgt,i) + wt · gt −wt · gt (8)

≤ 1

η
[

N∑
i=1

wt,i exp(−ηgt,i)− 1] + wt · gt −wt · gt Using log x ≤ x− 1 (9)

=
1

η

N∑
i=1

wt,i[exp(−ηgt,i − 1 + ηgt,i)]−wt · gt Using
∑
i wt,i = 1 (10)

=
1

η

N∑
i=1

wt,iη
2g2t,i/2−wt · gt Using exp(−x) ≤ 1− x+ x2/2 (11)

(12)

Summing ?t over t = 1, . . . , T , we have the regret bound

T∑
t=1

?t =
1

η
log

N∑
i=1

exp(−ηg1:T,i)−
1

η
log(N) ≥ −max

i
(g1:T,i) (13)

T∑
t=1

?t ≤
η

2

T∑
t=1

wt,ig
2
t,i −

T∑
t=1

wt · gt (14)

Regret(T ) =

T∑
t=1

wt · gt −max
i

(g1:T,i) ≤
η

2

T∑
t=1

N∑
i=1

wt,ig
2
t,i + log(N)/η (15)

Note that we substitute g̃t,i with gt,i ∈ [0, G] in multi-armed bandit algorithm. The corresponding regret
bound is then

Regret(T ) ≤ η

2

T∑
t=1

N∑
i=1

wt,ig̃
2
t,i + log(N)/η (16)

To take the expectation of regret, we compute

E[g̃t,i|wt] = gt,i (17)

E[g̃2t,i|wt] =

N∑
j=1

wt,j
g2t,i
w2
t,i

δi,j ≤
G2

wt,i
(18)

E[E[g̃2t,i|wt]] ≤ G2 (19)

E[Regret(T )] = E[

T∑
t=1

wt · g̃t]−max
i

[g1:T,i] (20)

≤ E[E[
η

2

T∑
t=1

N∑
i=1

wt,ig̃
2
t,It |wt]] + log(N)/η (21)

=
η

2
TNG2 + log(N)/η (22)

Setting η = frac
√

2 logNG
√
NT , we have Regret(T ) ≤

√
2TN logNG
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