
CSE599s, Spring 2012, Online Learning Lecture 7 - 04/17/2012

Adaptive per-coordinate Learning
Lecturer: Brendan McMahan Scribe: Paris Koutris

1 Online Gradient Descent Revisited

As we have seen in previous lectures, the standard version of the OGD algorithm has a regret bound

RegretT ≤
2R2

ηT
+

1

2

T∑
t=1

ηtg
2
t , (1)

where ηt is the global learning rate at round t. In general, the only restriction we need on the learning rate
is that it is a non-increasing function of time (number of rounds).

Different choices for the learning rates lead to different regret bounds. For example, by choosing a

learning rate ηt = R
√
2

G
√
t
, and assuming that the subgradients gt are upper bounded, i.e. ‖gt‖ ≤ G, we obtain

the following regret bound,

RegretT ≤ 2
√

2RG
√
T . (2)

The problem with this choice boils down to the fact that the learning rate is oblivious of the subgradients
gt we have already seen (recall the bad example from the previous lecture where the sequence of one-
dimensional gt included a lot of zeros). In order to overcome this problem, the choice of the learning rate as

ηt =
√
2R√∑t
s=1 g

2
s

gives an even better regret bound,

RegretT ≤ 2
√

2R

√√√√ T∑
t=1

g2t . (3)

This choice of learning rate does not lead to a better worst-case algorithm, but provides us with a more
efficient learning algorithm when the problem has a non-adverserial structure. The question is now: can we
make this approach even more powerful? The crucial idea here is to adapt the learning rate not only to
the subgradients, but also to specific coordinates. We call this per-coordinate learning. First, let us provide
some motivation of why per-coordinate learning may perform better in some settings.

Example 1 Consider a typical learning setting where labeled examples of the form (xt, yt) arrive, where
xt ∈ Rn is the feature vector of the example and yt ∈ {0, 1} its label. The learning problem will admit a loss
function of the form ft(w) = `(w · xt; yt), where different choices of ` lead to different learning algorithms.
The subgradient of this function will typically be gt = `′(w · xt; yt)xt.

In many real-world cases (for example, the bag-of-words model), the feature vectors xt (where xt,i may
correspond to the indicator variable of the fact: does word i belong to document t?) is very sparse. For
example, n may be in the order of 107, while a feature vector may typically have 100 non-zero entries. In
this case, we would like to keep a distinct learning rate for each coordinate (i.e. each word) instead of a
global learning rate.

The algorithm we describe next (PC-OGD) tackles the above issue. In order to keep the description
simple, we will assume that the feasible set for the vectors wt will be W = {w|wi ∈ [−B,B]} for some
constant B. This simplifies the treatment of the problem, since we can handle each coordinate independently
of the other coordinates. Compare this with a feasible set of the form {w|w1 + w2 ≤ 1}, where the choice
for w1 depends on the choice of w2 (for example, they can not be both 1). We should note here that the
algorithm we will present admits the same regret bound for any feasible convex set, but projection needs to
be handled carefully and the analysis is more technical.

1



Algorithm PC-OGD. The update at step t+ 1 is

wt+1,i = Π(wt,i − ηt,i · gt,i) where ηt,i =
B
√

2√∑t
s=1 g

2
s,i

. (4)

Notice that the algorithm keeps a different learning rate for each coordinate and adapts it according to
the subgradient at this specific coordinate. The following theorem gives us the regret bound for the above
algorithm.

Theorem 1. For PC-OGD, RegretT ≤
∑n
i=1 2

√
2B

√∑T
t=1 g

2
t,i.

Proof. The basic idea is that the linearity of the regret allows to reorganize the sum and then bound the
regret for each coordinate separately. Indeed, we have:

RegretT =

T∑
t=1

{gt · wt − gt · w∗}

=

T∑
t=1

{
n∑
i=1

gt,iwt,i −
n∑
i=1

gt,iw
∗
i }

=

n∑
i=1

{
T∑
t=1

gt,iwt,i −
T∑
t=1

gt,iw
∗
i }

=

n∑
i=1

RegretiT

where RegretiT is defined as the regret in the case where the loss function is ft,i(w) = gt,iwi. Using the regret

bounds we have previously proved, we can bound RegretiT ≤ 2
√

2B
√∑T

t=1 g
2
t,i. This completes the proof of

the regret bound.

We next show that the regret bound we obtained is at least as good as the bound for OGD with a global
rate.

Lemma 2. The PC-OGD regret bound is at least as good as the OGD bound.

Proof. Let us define b = (B,B, . . . , B). Notice that R = ‖b‖. Define gi =
√∑t

s=1 g
2
t,i and g = (g1, . . . , gn).

We have that

‖g‖ =

√∑
i

g2i =

√∑
i

∑
t

g2t,i =

√∑
t

∑
i

g2t,i =

√∑
t

g2t

Now, we can show that:

n∑
i=1

2
√

2B

√√√√ T∑
t=1

g2t,i = 2
√

2b · g ≤ 2
√

2 ‖b‖ ‖g‖ = 2
√

2R

√∑
t

g2t ≤ 2
√

2RG
√
T

where the inequality is an application of Cauchy-Schwartz. The right-hand side is the same as Eq. (2).

The per-coordinate learning rate performs better with more independence among the coordinates. This
approach can be further generalized by modeling correlations between the coordinates of the feature vector.
More precisely, the updates will now be of the form wt+1 = wt − Dtgt, where Dt is a n × n matrix. The
PC-OGD algorithm corresponds to the case where Dt is a diagonal matrix. The disadvantage of introducing
correlations is that the space requirements for keeping the learning rate matrix become too large.

2



2 Sparse Models

In this section, we discuss how we can modify the learning algorithms we have seen so far in order to
produce sparse models. A sparse model corresponds to a vector w with few non-zero entries. Sparse models
are appealing for the following reasons:

• Model storage: The storage requirement for a non-sparse vector will be O(n), where n is the dimension
of the vector. For high dimensional models, this may be infeasible. A sparse vector w can be stored
using other representations with much less space.

• Feature selection: In the case where wi = 0, we know that feature i is irrelevant for our problem. This
allows for potentially better feature selection in the future.

A first naive approach to this problem would be to restrict the feasible set of vectors w to be sparse. More
precisely, define W to contain only vectors where the number of non-zero entries is bounded: for example,
W = {w ∈ R107 |#non zero entries ≤ 104}. Unfortunately, such a feasible set is not convex. Additionally,
this problem is NP-hard even in the offline case, i.e. when all the data is available to us.

The approach we follow is to use L1 regularization. Intuitively, we penalize a vector whenever it introduces
non-zero entries. The following figure shows the penalty introduced by the L1 regularizer in the 1-dimensional
case. We should note here that using instead L2 regularization does not lead to sparser vectors.

0

For example, we can modify the loss function ft to penalize for non-zeros as follows:

f̂t(w) = `(w · xt; yt) + λ ‖w‖1

Now we use the subgradient ĝt of f̂t to perform the updates according to the OGD algorithm: wt+1 = wt−ηĝt.
However, this approach does not work well, as the next example shows.

Example 2 Consider the 1-dimensional case, where the sequence of subgradients gt is: (0.5,−1,+1, . . . ).
Using ĝt in the update step of OGD, the vector wt will oscillate between negative and positive values, without
ever converging to 0, which is the best solution and is also sparse.

Instead, we can use the idea of L1 regularization by viewing OGD from a different angle. One can show
that OGD is equivalent to the following update:

wt+1 = arg min
w
{gt · w +

1

2η
‖w − wt‖2} (5)

Indeed, in order to find the w that minimizes the above expression, we want a w such that O{gt · w +
1
2η ‖w − wt‖

2} = 0, or equivalently gt + 1
η (w − wt) = 0.

Having the updates into this form, we can now add directly the L1 regularization to come up with an
update step that produces sparse solutions:

wt+1 = arg min
w
{gt · w + λ ‖w‖1 +

1

2η
‖w − wt‖2} (6)

3



We next switch to the FTRL algorithm. Let us remind that the updates for round t + 1 when the
regularization r(w) is fixed are of the form:

wt+1 = arg min
w
{g1:t · w + r(w)}

For r(w) = 1
2η ‖w‖

2
, it can be shown that FTRL is equivalent to OGD with constant learning rate η (if we

don’t project). We can next generalize this approach by adding a regularizer rt for each step t. In this case,
the updates will be as follows:

wt+1 = arg min
w
{g1:t · w + r1:t(w)} (7)

By choosing rt(w) = σt

2 ‖w − wt‖
2
, we obtain an algorithm that is equivalent to OGD with adaptive learning

rate ηt ≈ 1
σ1:t

. In this setting, adding L1 regularization as we did with OGD will lead to the following update
step:

wt+1 = arg min
w
g1:t · w + tλ ‖w‖1 + r1:t(w) (8)

We should notice here the factor t that appears in the regularization term. We will show in later lectures
that this factor will actually make L1 regularization much more effective for FTRL in comparison to OGD.

4


