CSE599s, Spring 2012, Online Learning	Lecture $99 - 01/01/2012$
Sample file for CSE599s	
Lecturer: Brendan McMahan or Ofer Dekel	Scribe: Your Name Here

1 Introduction

This sample shows how to use the cse 599s style file.

2 Notation

We will typically use the following notation. Don't worry if you don't know what these all mean yet.

symbol	meaning
$t \in \{1, \dots, T\}$	There are T total rounds, and t indexes the current round.
$w_t \in \mathbb{R}^n$	The feasible point selected by the algorithm on round t .
$n \in \mathbb{N}^+$	The dimensionality of the feasible set of convex points.
$w_{t,i} \in \mathbb{R}$	The <i>i</i> th coordinate of w_t , with $i \in \{1,, n\}$.
$\mathcal{W} \subseteq \mathbb{R}^n$	A convex feasible set containing the possible w_t .
$f_t:\mathcal{W} o\mathbb{R}$	A convex loss function selected by the adversary on round t .
$g_t \in \mathbb{R}^n$	The gradient of the current loss function at w_t , so $g_t = \nabla f_t(w_t)$.
$r: \mathcal{W} \to \mathbb{R}$	A strongly convex regularization function.
(x_t, y_t)	Feature vector x (usually in \mathbb{R}^n), and label $y \in \mathbb{R}$
$h \in \mathcal{H}$	Hypothesis h from the set of posssible hypotheses \mathcal{H} .
\hat{y}_t	Predicted label for x_t , for example $\hat{y}_t = h(x_t)$.

3 Online learning is fun

Yes it is (see for example [1])

Theorem 1. My algorithm works.

Proof. I have proof.

References

[1] N. Cesa-Bianchi and G. Lugosi, "Prediction, Learning, and Games", Cambridge University Press, 2006.