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1 Follow the Leader Against Quadratics

In some cases FTL can be a very good algorithm. An example of such a case is a 1-D linear regression that
can be generalized to the n-dimensional case.

• on each round, we chose wt ∈ [−1, 1]

• adversary reveals yt ∈ [−1, 1]

• we pay ft(w) = 1
2 (w − yt)2

Applying FTL:

wt+1 = argmin
w∈[−1,1]

f1:t(w) (1)

ft(w) =
1

2
(w − yt)2 =

1

2
w2 − wyt +

1

2
y2t︸︷︷︸

constant

(2)

Without loss of generality we have:

ft(w) =
1

2
w2 − wyt (3)

f1:t(w) =
t

2
w2 − y1:tw︸ ︷︷ ︸

objective to minimize to chose wt+1

(4)

We solve by differentiating (4) and setting to zero. Optimal solution is then:

wt+1 =
y1:t
t

(5)

Lemma 1. f is a convex function ⇒ ∀w,wt ∈ W:

f(w) ≥ f(wt) + Of(wt)(w − wt) (6)

ft(wt)− ft(wt+1) ≤ Oft(wt)(wt − wt+1) (7)

≤ ‖Oft(wt)‖︸ ︷︷ ︸
bound on gradient

bound on distance︷ ︸︸ ︷
‖wt − wt+1‖ (Cauchy-Schwarz) (8)

Now, we compute the bound on the regret in the quadratic case.

wt − wt+1 =
y1:t−1
t− 1

− (
y1:t−1
t− 1

· t− 1

t
+
yt
t

) (9)

=
y1:t−1
t(t− 1)

− yt
t
≤ t− 1

t(t− 1)
+

1

t
≤ 2

t
(10)
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Regret ≤
∑
t

ft(wt)− ft(wt+1) ≤
∑
t

2(
2

t
) ≤ 4

T∑
t=1

1

t
≤ 4(log(T ) + 1) (11)

Conclusion: On quadratic functions, the FTL algorithm is very good. Linear functions are in some sense
hardest for online convex optimization.

2 Convexity

Definition 2. A set W ⊆ Rn is convex if ∀w,w′∈W ∀α ∈ [0, 1] it holds that:

αw + (1− α)w′ ∈ W (12)

Figure 1: Example of a convex set(left) and a set that is not convex (right)

Definition 3. A function f :W → R is convex if W is convex and if ∀w,w′∈W ∀α ∈ [0, 1] it holds that:

αf(w) + (1− α)f(w′) ≥ f(αw + (1− αw′) (13)

Theorem 4. A convex function has convex level sets.

Note that the converse of the above theorem is not true. However, a function with convex level sets is quasi
convex. An example of such a function is f(w) =

√
|w|.

Definition 5. g ∈ Rn is a subgradient of the convex function f :W → R at the point ŵ ∈ W if ∀w ∈ W:

f(w) ≥ f(ŵ) + (w − ŵ) · g︸ ︷︷ ︸
first order tailor expansion of f at ŵ

(14)

It should be noted that it is possible to have multiple subgradients at one point (figure 2).

Definition 6. The subdifferential, denoted ∂f(ŵ), is defined as:

∂f(ŵ) = {g : g is a subgradient of f at ŵ} (15)

The subdifferential itself is a convex set and can have 0, 1, or ∞ elements.

Theorem 7. The function f : W → R is convex iff ∀w in the relative interior of W the subdifferential is
non-empty.

In other words, for convex functions, there is at least 1 subgradient at every point.
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Figure 2: 3 subgradients shown for a point on the function

3 Playing Against Linear Functions

Now, recall the problems of FTRL:

1. Finite Horizon: The algorithm itself needs to know T. Solved using the doubling trick.

2. Focused on class of linear cost functions. Since cost is highest with linear functions, convex functions
will do better.

3. The feasible set is W = Rn.

The question arises, what if the feasible set is constrained?

3.1 Linearizing Convex Functions

Linearizing a convex loss makes online learning more difficult. For any w∗,gt ∈ ∂ft(wt) specifically:

w∗ = argmin
w∈W

f1:t(w
∗) (16)

Regret(T ) = f1:t(wt)− f1:t(w∗) (17)

=

T∑
t=1

[ft(wt)− ft(w∗)] ≤
T∑
t=1

[wt · gt − w∗ · gt] (18)

Figure 3: the cost to point w∗ is lowered significantly due to linearization
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As illustrated in figure 3, using the linear approximation, the loss of all other actions is decreased thereby
increasing the regret for the player. Therefore, linearized regret is an upper bound for convex regret. Using
this fact, by transforming the convex online learning problem to a linear online learning problem, we can
have bounded regret. While in the linear case we cannot do better than

√
T regret, in the case of a strongly

convex function, we can do better.

adversary
transform-

ation

linear
online

algorithm

ft g ∈ ∂ft(wt)

wt+1wt+1

Figure 4: transforming online convex to online linear

Conclusion: Follow the Regularized Leader using the regularization r(w) = σ
2 ‖w‖

2 and the doubling trick

enjoys an infinite horizon regret of O(
√
T ) against an adversary that uses convex functions with bounded

subgradients.

Definition 8. A function f : Rn → R is G-Lipschitz if ∀w,w′∈Rn:

|f(w)− f(w′)| ≤ G‖w − w′‖ (19)

Theorem 9. For a convex function f : Rn → R, the function is G-Lipschitz iff ∀w ∈ Rn ∀g ∈ ∂ft(wt),
|g| < G.

Proof. (⇐)
Choose w ∈ W, g ∈ ∂ft(wt).

G ‖w − w − g

‖g‖
‖︸ ︷︷ ︸

1

≥ f(w +
g

‖g‖
)− f(w) (20)

using the definition of the subgradient:

f(w +
g

‖g‖
)− f(w) ≥ (w +

g

‖g‖
− w)g =

g · g
‖g‖

= ‖g‖ (21)

(⇒)
Choose w′ ∈ W, g ∈ ∂ft(wt)

f(w′)− f(w) ≤ (w′ − w) · g ≤ ‖w′ − w‖ · ‖g‖︸ ︷︷ ︸
Cauchy-Schwarz

≤ ‖w′ − w‖G (22)

Conclusion: We see that FTRL using the regularization r(w) = σ
2 ‖w‖

2 and the doubling trick enjoys an

infinite horizon regret of O(
√
T ) against an adversary that uses convex Lipschitz functions.
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