
CSE599s Spring 2014 - Online Learning
Theory & Programming Homework Exercise 3

Due 6/6/2014

1 Programming: Adaptive Learning Rates

Recall in programming HW #1, part 2(c), you implemented the OGD algorithm with a
constant learning rate η and used it to train a linear support-vector machine on a small
spam-classification task. Now you will solve the same problem, but using adaptive per-
coordinate learning rates. In particular, the update will be computed separately for each
coordinate i ∈ {1, 2, . . . , d} based on the rule

wt+1,i = wt,i − ηt,igt,i, (1)

where the learning rates have the form

ηt,i =
α√

1 +
∑t

s=1 g
2
s,i

.

Here α is a parameter you will choose, and gs,i ∈ R is the ith coordinate of the gs ∈ ∂fs(ws),
a subgradient of the sth loss function at ws. In addition to your code, you will produce a
plot showing the average per-round loss as a function of t for t = 1, . . . , 4601, with three lines
corresponding to α ∈ {0.2α0, α0, 5.0α0} with α0 = 7.2 We have chosen these values so that
α = α0 should produce the lowest average per-round loss on the final round; since both a
somewhat lower and higher value of α produce worse loss, this is a good indication we have
done a good job picking α. For a real application, you would want to try a larger range of
αs, and plot the final cumulative loss as a function of α — you should see a nice, U -shaped
curve. We did this in order to choose the value α0, see Figure 1.

For comparison, again solve the problem with fixed learning-rate OGD, where the update
is just

wt+1 = wt − ηgt.

Plot three lines for constant-learning rate OGD for η ∈ {0.2η0, η0, 5.0η0} with η0 = 0.22.
Recall that the loss function for a linear SVM is the hinge loss, defined as

ft(w) = max{0, 1− ytwTxt},

1



10
−2

10
−1

10
0

10
1

10
2

2800

3000

3200

3400

3600

3800

4000

4200

alpha

c
u

m
u

la
ti
v
e

 l
o

s
s

U−shaped curve for adaptive coordinate learning rate tuning

10
−3

10
−2

10
−1

10
0

10
1

3500

3600

3700

3800

3900

4000

4100

eta

c
u

m
u

la
ti
v
e

 l
o

s
s

U−shaped curve for fixed learning rate tuning

Figure 1: Learning-rate tuning plots. The left plot has α plotted on a log-scale, and the
right plot has η plotted on a log scale.

where xt, wt ∈ Rd and yt ∈ {−1,+1}. Note that while we can view OGD as FTRL on
linearized loss functions f̂t(w) = gt · w for gt ∈ ∂ft(wt) (which drops constant terms), when
computing the average per-round loss, it is critical you use the original true loss functions
ft, not the linearized functions f̂t. (You should think about why this is the case, but you do
not need to write up your answer.)

Comment: In order for regret bounds of the form BG
√
T to hold, where the L2 norm

of the post-hoc comparator u is less than B, technically we should use the update that
first applies the per-coordinate gradient update of (1), and then projects that point into the
feasible set W (usually an L∞ ball when using per-coordinate rates). However, in practice
this is often unnecessary, and requires tuning an extra parameter (the radius of the feasible
set), and so we will not implement this here.

2 Theory: Adaptive Regret Bounds for

Strongly Convex Functions

Recall we proved the following theorem, using the Strong FTRL Lemma and some results
from convexity theory:

Theorem 1. Consider the FTRL algorithm that plays according to

wt+1 = argmin
w

f1:t(w) + r0:t(w), (2)

where the proximal regularizers rt(w) ≥ 0 for t ∈ {0, 1, . . . , T}, and rt(wt) = 0, and the
functions ft : Rd → R are convex. Let h0 = r0, and ht = rt + ft for t ≥ 1. Then, further
suppose the rt are chosen such that h0:t is 1-strongly-convex w.r.t. some norm ‖ · ‖(t) for

2



w ∈ dom r0:t. Then, choosing any gt ∈ ∂ft(wt) on each round, for any u ∈ Rd,

Regret(u) ≤ r0:T (u) +
T∑
t=1

‖gt‖2(t),?. (3)

We will use this theorem to prove a regret bound for the Follow-The-Leader algorithm
on strongly-convex functions, which plays

wt+1 = argmin
w

f1:t(w). (4)

Suppose each ft is 1-strongly convex w.r.t a fixed norm ‖ · ‖, and let GT = maxt∈{1,...T} ‖gt‖?.
(Typically in order to provide such a guarantee on the gt in advance, we would have to
constrain wt ∈ W for some bounded feasible set, but we won’t worry about that for this
problem.) You will prove the regret bound

Regret(u) ≤ G2
T (1 + log T ),

which holds simultaneously for all T :

a) Define regularizers such that the update of (4) is equal to that of (2) (this is trivial).

b) Prove that ‖w‖(t) =
√
t‖w‖ can be used in Theorem 1, and further that ‖g‖(t),? = 1√

t
‖g‖?.

Prove the first fact from the definition of strong convexity, and the second from the
definition of the dual norm (see the lecture 5 notes for both definitions). You don’t need
to prove that ‖w‖(t) is actually a norm (though you might want to check this for yourself).

c) Plug the definition of rt and ‖ · ‖(t),? into (3), and simplify using the definition of GT , and

the fact that
∑T

t=1
1
t
≤ 1 + log T .

Observe that this log T regret bound is significantly better than the
√
T bounds achievable

for general convex functions. The key is that the strongly-convex functions are essentially
self-regularizing.

3


	Programming: Adaptive Learning Rates
	Theory: Adaptive Regret Bounds forStrongly Convex Functions

