CSE599s Spring 2014 - Online Learning Theory & Programming Homework Exercise 3

Due 6/6/2014

1 Programming: Adaptive Learning Rates

Recall in programming HW #1, part 2(c), you implemented the OGD algorithm with a constant learning rate η and used it to train a linear support-vector machine on a small spam-classification task. Now you will solve the same problem, but using adaptive percoordinate learning rates. In particular, the update will be computed separately for each coordinate $i \in \{1, 2, \ldots, d\}$ based on the rule

$$w_{t+1,i} = w_{t,i} - \eta_{t,i} g_{t,i}, \tag{1}$$

where the learning rates have the form

$$\eta_{t,i} = \frac{\alpha}{\sqrt{1 + \sum_{s=1}^{t} g_{s,i}^2}}$$

Here α is a parameter you will choose, and $g_{s,i} \in \mathbb{R}$ is the *i*th coordinate of the $g_s \in \partial f_s(w_s)$, a subgradient of the *s*th loss function at w_s . In addition to your code, you will produce a plot showing the average per-round loss as a function of *t* for $t = 1, \ldots, 4601$, with three lines corresponding to $\alpha \in \{0.2\alpha_0, \alpha_0, 5.0\alpha_0\}$ with $\alpha_0 = 7.2$ We have chosen these values so that $\alpha = \alpha_0$ should produce the lowest average per-round loss on the final round; since both a somewhat lower and higher value of α produce worse loss, this is a good indication we have done a good job picking α . For a real application, you would want to try a larger range of α s, and plot the final cumulative loss as a function of α — you should see a nice, *U*-shaped curve. We did this in order to choose the value α_0 , see Figure 1.

For comparison, again solve the problem with fixed learning-rate OGD, where the update is just

$$w_{t+1} = w_t - \eta g_t.$$

Plot three lines for constant-learning rate OGD for $\eta \in \{0.2\eta_0, \eta_0, 5.0\eta_0\}$ with $\eta_0 = 0.22$.

Recall that the loss function for a linear SVM is the hinge loss, defined as

$$f_t(w) = \max\{0, 1 - y_t w^T x_t\},\$$

Figure 1: Learning-rate tuning plots. The left plot has α plotted on a log-scale, and the right plot has η plotted on a log scale.

where $x_t, w_t \in \mathbb{R}^d$ and $y_t \in \{-1, +1\}$. Note that while we can view OGD as FTRL on linearized loss functions $\hat{f}_t(w) = g_t \cdot w$ for $g_t \in \partial f_t(w_t)$ (which drops constant terms), when computing the average per-round loss, it is critical you use the *original* true loss functions f_t , not the linearized functions \hat{f}_t . (You should think about why this is the case, but you do **not** need to write up your answer.)

Comment: In order for regret bounds of the form $BG\sqrt{T}$ to hold, where the L_2 norm of the post-hoc comparator u is less than B, technically we should use the update that first applies the per-coordinate gradient update of (1), and then *projects* that point into the feasible set W (usually an L_{∞} ball when using per-coordinate rates). However, in practice this is often unnecessary, and requires tuning an extra parameter (the radius of the feasible set), and so we will not implement this here.

2 Theory: Adaptive Regret Bounds for Strongly Convex Functions

Recall we proved the following theorem, using the Strong FTRL Lemma and some results from convexity theory:

Theorem 1. Consider the FTRL algorithm that plays according to

$$w_{t+1} = \operatorname*{argmin}_{w} f_{1:t}(w) + r_{0:t}(w), \tag{2}$$

where the proximal regularizers $r_t(w) \ge 0$ for $t \in \{0, 1, ..., T\}$, and $r_t(w_t) = 0$, and the functions $f_t : \mathbb{R}^d \to \mathbb{R}$ are convex. Let $h_0 = r_0$, and $h_t = r_t + f_t$ for $t \ge 1$. Then, further suppose the r_t are chosen such that $h_{0:t}$ is 1-strongly-convex w.r.t. some norm $\|\cdot\|_{(t)}$ for

 $w \in \text{dom } r_{0:t}$. Then, choosing any $g_t \in \partial f_t(w_t)$ on each round, for any $u \in \mathbb{R}^d$,

$$\operatorname{Regret}(u) \le r_{0:T}(u) + \sum_{t=1}^{T} \|g_t\|_{(t),\star}^2.$$
(3)

We will use this theorem to prove a regret bound for the Follow-The-Leader algorithm on strongly-convex functions, which plays

$$w_{t+1} = \underset{w}{\operatorname{argmin}} f_{1:t}(w). \tag{4}$$

Suppose each f_t is 1-strongly convex w.r.t a fixed norm $\|\cdot\|$, and let $G_T = \max_{t \in \{1,...T\}} \|g_t\|_{\star}$. (Typically in order to provide such a guarantee on the g_t in advance, we would have to constrain $w_t \in W$ for some bounded feasible set, but we won't worry about that for this problem.) You will prove the regret bound

$$\operatorname{Regret}(u) \le G_T^2(1 + \log T),$$

which holds simultaneously for all T:

- a) Define regularizers such that the update of (4) is equal to that of (2) (this is trivial).
- b) Prove that $||w||_{(t)} = \sqrt{t} ||w||$ can be used in Theorem 1, and further that $||g||_{(t),\star} = \frac{1}{\sqrt{t}} ||g||_{\star}$. Prove the first fact from the definition of strong convexity, and the second from the definition of the dual norm (see the lecture 5 notes for both definitions). You don't need to prove that $||w||_{(t)}$ is actually a norm (though you might want to check this for yourself).
- c) Plug the definition of r_t and $\|\cdot\|_{(t),\star}$ into (3), and simplify using the definition of G_T , and the fact that $\sum_{t=1}^T \frac{1}{t} \leq 1 + \log T$.

Observe that this log T regret bound is significantly better than the \sqrt{T} bounds achievable for general convex functions. The key is that the strongly-convex functions are essentially self-regularizing.