
CSE599s, Spring 2014, Online Learning Due: 05/06/2014

Programming Assignment 1
Instructors: Ofer Dekel, Brendan McMahan TA: De (Dennis) Meng

Submission: Programming assignments involve both mathematical derivation and coding. Your sub-
mission should include a write-up that describes your derivation and explains your code for each sub-problem.
Your code should print out the final results as required by each problem. Please submit your write-up (pdf
file) and source code files in a single compressed package named “Coding1 YourFirstName YourLastName”
to the dropbox

https://catalyst.uw.edu/collectit/dropbox/summary/demeng/31445.
You can post questions on the discussion board
https://catalyst.uw.edu/gopost/board/demeng/36570/.
If you have trouble with Matlab, feel free to email TA Dennis, demeng@uw.edu.

In this programming assignment, we will implement algorithms for the online convex optimization and
analyze their regret. The algorithms are:

• Follow-The-Leader (FTL)

• Follow-the-Regularized-Leader (FTRL)

• Online Gradient Descent (OGD).

1. Online Linear Optimization in 1D

(a) Convex quadratic functions in 1D can be generally expressed as f(w) = zw+ λ
2w

2, where w is the
scalar variable, z and λ ≥ 0 are scalar constants. When λ = 0, f(w) reduces to a linear function.
Implement an optimizer to minimize f(w) (for both λ = 0 and λ ̸= 0 cases) on the interval
W = [−1,+1]. This optimizer will be used to implement FTL and FRTL later in this problem.

(b) In the online convex optimization framework, after the player makes a prediction wt on each
round, the adversary chooses a loss function ft : W → R and the player suffers the loss ft(wt).
Consider two different adversaries:

i. The adversary chooses the function ft(w) = ztw with zt ∈ [−1, 1] chosen to maximize ft(wt)
(for w = 0, the adversary selects zt = 1). Implement this adversary.

ii. The adversary chooses the function ft(w) = ztw with zt = +1 or zt = −1 with equal
probability. Implement this adversary.

(c) For each of the adversaries described above, implement FTL with T = 1000; use the initial strategy

w1 = 0. Report the cumulative loss
∑T

t=1 ft(wt), the cumulative loss of the best hypothesis in

hindsight min
w∈W

∑T
t=1 ft(w), and the final regret. (For the randomized adversary, report the mean

quantities from 10 runs, using different randomization for each run).

(d) For each of the adversaries described above, implement FTRL with T = 1000 and the regularization
function R(w) = 1

2ηw
2, where η is the learning rate chosen based on the formula discussed in class.

Report the same quantities requested in part (c).

2. Online SVM for Email Spam Classification

Consider the problem of binary linear prediction with hinge loss, which was discussed in Lecture 1 (see
Lecture 1 notes). Recall that the hinge loss function is defined as

ft(w) = max{0, 1− ytw
Txt},

1



where xt, wt ∈ Rn and yt ∈ {−1,+1}. Say that our goal is to detect email spam. On each round t, the
player chooses a spam detector wt and the adversary chooses an instance (xt, yt), where xt is a feature
vector that represents an email and yt is its binary label (spam or non-spam). The player incurs a loss
ft(wt) and receives the feedback (xt, yt). Implement FRTL and OGD for this problem.

Dataset. We will use a small email dataset adapted from the UCI Machine Learning Repository. This
dataset contains 4601 emails, each represented by 57 features (n = 57). Additional information on
this dataset is available at https://archive.ics.uci.edu/ml/datasets/Spambase. Assume that the
emails arrive in sequence and are classified one after the other, so the player makes a total of T = 4601
predictions.

We have already preprocessed the dataset to have the following structure. The 4601 feature vectors
are stored as rows of the matrix spam inst ∈ R4601×57 and are normalized to have an ℓ2 norm of one.
Spam and non-spam emails are labeled by 1 and −1 respectively and the 4601 labels are stored in a
column vector spam label ∈ R4601.

You can load the data in Matlab using the command load(’spam data.mat’).

Optimization software. We will use the optimization software MOSEK to solve each step of the
FTRL algorithm. MOSEK solves large-scale batch convex optimization problems using a state-of-the-art
interior-point optimizer. You do not have to know too much about MOSEK, but simply download and
install it from

http://mosek.com/resources/download/.

You can get a trial license or free academic license. The license information is available on the above
webpage. The installation manual may be helpful:

http://docs.mosek.com/7.0/toolsinstall/index.html.

Feel free to contact the TA if you have trouble with the installation.

(a) Characterize the subgradient set of the hinge loss function ft(w). Find an upper bound on the ℓ2
norm of the subgradients for the given dataset.

(b) We apply the algorithm FTRL with the regularization function R(w) = 1
2η∥w∥

2
2 for online SVM.

In each round t, the prediction wt is made by solving a convex optimization problem

minimize
w

t−1∑
i=1

max{0, 1− yiw
Txi}+

1

2η
∥w∥22.

This optimization problem can be formulated as a quadratic optimization problem

minimize
ξ,w

t−1∑
i=1

ξi +
1

2η
∥w∥22

subject to ξi ≥ 0, i = 1, . . . , t− 1
yiw

Txi ≥ 1− ξi, i = 1, . . . , t− 1.

where w ∈ Rn and ξ ∈ Rt−1. You do not need to worry about how to solve this optimization
problem; instead you can simply call the Matlab function l2svm provided in this homework
package using the following syntax.

[w, fval] = l2svm(spam label, spam inst, eta).

You need to add the path of MOSEK toolbox to top of the Matlab file l2svm.m, see comments in
the file. In each round t, the input spam label is the vector of t − 1 labels, spam inst is the
matrix (of size (t− 1)× 57) of the corresponding feature vectors, eta is the learning rate η. The
output w is the optimal w⋆, and fval is the optimal objective value.

2



To compute the regret, we need to calculate the cumulative loss of the best classifier in hindsight
min
w∈W

∑T
t=1 ft(w), where W = {w : ∥w∥2 ≤ B}. This can be obtain by solving an optimization

problem

minimize
w

T∑
i=1

max{0, 1− yiw
Txi}

subject to ∥w∥2 ≤ B

where w ∈ Rn. Again, you are provided a Matlab function to solve this optimization problem.
You can imply call the Matlab function l2svmball provided in this homework package using the
following syntax.

[w, fval] = l2svmball(spam label, spam inst, B).

You need to add the path of MOSEK toolbox on top of l2svmball.m as well.

Implement online SVM with FTRL on the provided dateset. Choose B = 2, and again use the
learning rate that minimizes the regret bound. Report the learning rate, the cumulative loss∑T

t=1 ft(wt), the cumulative loss of the best predictor in hindsight min
w∈W

∑T
t=1 ft(w), and the

regret.

Note that, although MOSEK is highly efficient, the runtime on the given dataset could be as long
as 15-30 minutes depending on your computer configuration. So it might be a good idea to test
your code on a small subset of data first.

(c) We apply the algorithm OGD for online SVM. In each round t, the prediction wt is made by the
update

wt = wt−1 − ηzt−1,

where zt−1 ∈ ∂ft−1(wt−1), η is the learning rate. If 0 is in the subgradient set, always choose it
(i.e. no need to do update on w).

Implement online SVM with OGD on the provided dateset. First, use the same learning rate used
for FTRL; report the learning rate and the cumulative loss

∑T
t=1 ft(wt). Using the the cumulative

loss of the best predictor in hindsight calculated in the previous part, compute the regret.

(d) Compare the runtime of FTRL and OGD. What can you conclude?

3


