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Introduction to Online Learning
Lecturer: Ofer Dekel Scribe: De Meng

1 Course Info

• Instructors: Ofer Dekel, oferd@microsoft.com, Brendan McMahan, mcmahan@google.com

• Course website: http://courses.cs.washington.edu/courses/cse599s/14sp/index.html

2 Introduction

Online prediction can be considered as a repetitive game between one player (a.k.a. predictor, learning
algorithm) and the environment (a.k.a. adversary). Denote T the number of rounds of the game. On each
round t (t = 1, . . . , T ), the game is played by the player and environment in the following intuitive form

• Environment: Choose an instance of problem.

• Player: Make a prediction for this instance.

• Environment: Incur a loss ∈ R for this prediction. (Smaller loss is preferred by the player.). Send
the feedback on the accuracy of the prediction to the player.

• Player: Learn and record the feedback.

2.1 Example: Online Binary Prediction Game

Online binary prediction has many applications, such as email spam classification, which may not fit into
stochastic models. In this application, the player observes some features of an email and makes a binary
prediction, either spam or not spam. Here are details: for each round t = 1, . . . , T

• Player observes a feature vector xt ∈ Rn of an instance generated by the environment.

• Player makes a binary prediction ŷt ∈ {+1,−1}. +1,−1 represent “spam” and “not spam” respectively.

• Player observes feedback yt ∈ {+1,−1}.

• A loss is incurred ℓt = 1ŷt ̸=yt .

After T rounds, the cumulative loss is
∑T

t=1 ℓt. Intuitively, a “small” cumulative loss is desired at the end.
This “small” will later be defined precisely in the term of regret.

Here we present an equivalent definition of the binary prediction game. For t = 1, . . . , T ,

• Player chooses a hypothesis (a.k.a. binary classifier) ht from hypothesis class H

ht : Rn → {+1,−1}.

The hypothesis is a function that maps from a feature vector x ∈ Rn to a binary prediction set, e.g.
{+1,−1}. At round t, the choice of ht could base on all information recorded before t.

• Environment chooses (xt, yt).

• Player incurs a loss ℓt = 1h(xt) ̸=yt
.
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Figure 1: Hyperplane and halfspaces

2.2 Example: Online Binary Linear Predictor with Hinge Loss

Let’s first define binary linear predictor and hinge loss function.
The hypothesis hw : Rn → {+1,−1}

hw(x) = sign(w · x) =
{

+1, if w · x > 0
−1, if w · x < 0

is called binary linear predictor. The only parameter for this hypothesis is the vector w ∈ Rn. Geometrically,
all vectors that are perpendicular to w (i.e. zero inner product) forms a hyperplane {x : w · x = 0}, shown
in Figure 1. The data may fall into one of halfspaces {x : w · x < 0} and {x : w · x > 0}. |w · x| can be
interpreted as the prediction confidence.

The hypothesis class H
H = {hw(x) : w ∈ Rn, ∥w∥2 ≤ 1},

is the class of binary linear predictors.
A number of loss functions have been proposed to incur penalty for prediction error. 1ŷt ̸=yt is simply the

error indicator, or called zero-one loss. The hinge loss is defined as

l(w; (xt, yt)) = max{0, 1− ytw · xt}.

As shown in Figure 2, hinge loss function imposes penalty for wrong prediction (ytw · xt < 0) and right
prediction with small confidence (0 ≤ ytw · xt < 1).

The binary linear prediction game with hinge loss can be presented as follows. For t = 1, . . . , T ,

• Player chooses wt ∈ W, where W = {w ∈ Rn : ∥w∥2 ≤ 1}, a unit ball in Rn.

• Environment chooses (xt, yt).

• Player incurs a loss ℓt(wt; (xt, yt)) = max{0, 1− ytw · xt}. (xt, yt are regarded as parameters of ℓt.)

• Player receives feedback (xt, yt).

This game setting can be generalized as online convex optimization (OCO) which is discussed in next
section.
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Figure 2: Hinge loss function

3 Online Convex Optimization (OCO)

For t = 1, . . . , T

• Player chooses wt ∈ W, where W is a convex set in Rn.

• Environment chooses a convex loss function ft : W → R.

• Player incurs a loss ℓt = ft(wt) = ft(wt; (xt, yt)).

• Player receives feedback ft.

Assumption: The environment is oblivious to w1, . . . , wT , but can define f1, . . . , fT arbitrarily (perhaps
maliciously, even with full knowledge of the player’s algorithm, with infinity computation power).

Then, at the end, the cumulative loss
∑T

t=1 lt can be arbitrarily large. How to evaluate the prediction
performance? What is a good benchmark for the performance?

A good choice is the cumulative loss of the best fixed (or say static) hypothesis in hindsight,

min
w∈W

T∑
t=1

ft(w).

To choose this best fixed hypothesis, we need to know future, that is to collect all f1, . . . , fT , then run an
off-line algorithm.

The difference between the real cumulative loss and this minimum cumulative loss for fixed hypothesis
in hindsight is defined as regret,

R(T ) =

T∑
t=1

ft(wt)− min
w∈W

T∑
t=1

ft(w).

• If regret grows linearly, R(T ) = Ω(T ), the player is not learning.
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• If regret grows sub-linearly, R(T ) = o(T ), the player is learning and its prediction accuracy is improving.
The regret per round goes to zeros as T goes to infinity,

1

T

(
min
w∈W

T∑
t=1

ft(w)

)
→ 0, T → ∞.

• R(T ) = O(
√
T ).

4 Comparison Between Online Learning and Statistical Learning

Online learning (OL) Statistical learning (SL)

Similarities
Both define hypothesis space/class of predictors (in each round of a game
in OL while in training procedure of SL).
Both define a loss function to evaluate the prediction performance, and small
loss is preferred.
Instances and labels

Differences
learning in each round of game, no dis-
tinction between training and testing

first train a model, then test it

adversary case statistical assumption
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