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Per-coordinate Learning Rate and Per-round Norm
Lecturer: Brendan McMahan or Ofer Dekel Scribe: Danyang Zhuo

1 Recap

For rt(w) ≥ 0, rt(wt) = 0, we have

wt+1 = argmin
W

f1:t(w) + r0:t(w).

Regret ≤ r0:t(u) +
1

2

T∑
t=1

‖gt‖2(t),∗ .

Let ηt =
√
2B√∑t

s=1‖gs‖
2
, we have the following bound:

Regret ≤ 2
√

2B

√√√√ t∑
s=1

‖gs‖2.

2 Per-coordinate Learning Rate

The key observation here is that we should not use the same learning rate for different coordinates. Because
the regret bound depends on the magnitude on the point we played, some coordinates might have a lot of
zeros. In Generalized Linear Model,

ft(w) = l(w, xt).

pt = σ(w · xt).

∇ft(wt) = l′(w · xt) · xt = gt.

example: bag-of-words, each value in the vector represents whether a word exists in the text.

xt = (1, 0, 0, 0, 1, 0, 0, 1).

Regret(u) =

T∑
t=1

gtwt − gtu.

Regret(u) =

T∑
t=1

d∑
i=1

gt,i(wt,i − ui).

Regret(u) =

d∑
i=1

T∑
t=1

gt,i(wt,i − ui).

Note that
∑T

t=1 gt,i(wt,i − ui) is the per-coordinate regret.
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We can now assign different learning rate for each coordinate.

If W = w|wi ∈ [−Bi, Bi], we can run d gradient descent algorithm on each coordinate i with

ηt,i =

√
2Bi√∑t

s=1 ‖gt,i‖
2
.

Regret(u) ≤ 2
√

2 ~B · ~g

Regret(u) ≤ 2
√

2
∥∥∥ ~B∥∥∥

2
· ‖~g‖2

Let Bi = B for every coordinate i, we can further simply the regret to be

Regret(u) ≤ 2
√

2
√
dB

√√√√ T∑
t=1

‖gt‖22

Here we can see that this regret bound is
√
d better than the previous bound, because the previous

bound’s comparation point is in a ball that holds the hypercube where the per-coordinate learning is playing
in.

However, if we have a feasible set of w, we may not be able to run each coordinate independently.

3 An example to show that fixed learning rate is bad

There are two kinds of loss functions for w ∈ [−B,B].

Game I ft(w) = w

Game II ft(w) = |w − ε|

Adversary plays Game I for T0 rounds and then plays T
1
3
0 sub-problems II, each with length T

1
3
0 .

It can be shown that with fixed learning rate, Regret = Ω(T
2
3 ).

With per-coordinate learning rate, Regret = O(T
1
2 ).

4 Per-round Norm

Let Qt be a positive definite matrix.

‖x‖(t) =
∥∥∥Q 1

2
t

∥∥∥
2
.

‖x‖(t),∗ =
∥∥∥Q− 1

2
t

∥∥∥
2
.

We assume Qt is a diagonal matrix.

rt(w) =
1

2

∥∥∥Q 1
2
t (w − wt)

∥∥∥2
2

r0:t(u) is 1-strongly-convex with respect to ‖x‖(t).
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‖gt‖2(t),∗ =
∥∥∥Q− 1

2
1:t gt

∥∥∥2
2

=

d∑
i=1

1

σ1:t
‖gt‖22

r0(w) = λ ‖w‖1 +
1

2

∥∥∥Q 1
2
t (w − wt)

∥∥∥2
2

L1 regularization can enforce a sparse solution and thus is helpful for dimension reduction. Also, it can
speed up processing, wt might have 109 coordinates where only 108 of them are non-zero.
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