CSE599s, Spring 2014, Online Learning Lecture 14 - 05/14/2014

Stochastic Bandits
Lecturer: Ofer Dekel Scribe: Matthias W. Smith

1 Stochastic Bandits

This is a special case of the adversarial bandits covered in a previous lecture.
Stochastic Bandits Game
for rounds 1..T
player pulls a single arm per round {1...d}
player receives reward x;
The game bakes in a few assumptions which distinguish it from the general adversarial bandits case.

® Uy, 1s, ...,y are unknown distributions, supported on [0, 1], over reward

e pulling arm 4 for the s'th time results in reward x;5 ~ v; and (21, 242, ...) are independent

Essentially, the adversary generates the following table.

%1 V9 ... g
1 11 T21 .. Xd1

T2 X22 ... T42
T i T ... X4qT

2 Probability Theory

Before we dive into the stochastic bandits problem, we need to take a bit of a detour through some probability
theory.

2.1 Weak Law of Large Numbers

We start by requiring that 1, ..., x, are iid and “well-behaved” random variables. Then we can define the
emprical mean as [ = %2?21 x;. If we denote the expected mean p = E[x], then [i converges to u in
probability.

Theorem 1.
Ve >0, lim P(|ig—u|>e€) =0

n—roo

The theorem is readily present in nearly all statistical learning theory. In order to study sample com-
plexity, we need a non-asymptotic version of the law of large numbers (LLN).

2.2 Markov’s Inequality

E[«]

Theorem 2. If x is a non-negative r.v. and € > 0, then P(z > €) <



Proof. Start with the following assertion
€ - H{xze} S xX.

We have two possible cases, x > € and = < €. It is fairly easy to convince yourself that the statement must
always be true. Now we proceed by taking the expectation of each side.

EE[H{xZe}} < E[:c]

ePlx > €] < E[x]

Thus proving Markov’s Inequality. O

2.3 Chebychev’s Inequality

Theorem 3. If x is r.v. with p = E[x] < 00 and € > 0, then P(|Jz — p]) > €) < V%Q(x)

Proof. Define z = (z — p)?. By definition we can write
P(la —ul) =P(2 > €%),

and by Markov’s Inequality
E[2]

P(z > €) 5 -
€
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Assume without losing generality that u = 0. Noting that we could always define a new random variable
y = x — p where E[y] = 0 now.

Theorem 4. Assume pu =0, then z = 2% and

E[?]

= 62 .

P(lz| > €) = P(z > ¢?)

Proof. Use the Weak LLN with p = 0, assuming g = % S, @i, T1...1, are iid and E[z?] < co. By definition
we get the first relation

€l = El( > )7

Now use the fact that x; is a generic random variable and recast its squared sum as multiplication of two

random variables to get
n n

Separating terms in which ¢ = j and ¢ # 7,

n

%) = o Sl + Y Elwia].

i=1 i#j

Now we can eliminate the second term by using the linearity of expectation and the fact that we have defined
n=0.

€] = 5 D Ele?) = LEl?



Plugging back into the bound given by Chebychev’s Inequality we get

E[z?]
nez

= P(li—pl > o) <

And asn — oo

2.4 Confidence Intervals

These are all over the place in Machine Learning. Define § = E[fz], and similarly € = 4/ %. The term is

n

denoted the confidence and it is defined on V6 € [0, 1]. With probability (w.p.) >1—4§

. E[z?]
= pl <\ =5~
In diagram form the relation is shown below.
p—=0H/1/n)  pn+0(/1/n)
0 © ' ? 1
I

2.5 Hoeffding-Azuma Inequality

Theorem 5. Instead of plugging in the 2nd moment (E[z?]) into Markov’s Inequality use the “exponential
moment”, z = e 2i=0"Ti  {o gel

P(t > €) = P(z > ™)
Proof. Using Markov’s Inequality on the righthand side we have

P(z > ™€) < E[z]e ™.

We can substitute for z and turn the sum into a pi-product since it is in the exponent to get

E[Z]e—nke — E[H eA:ch] . e—n)\s.

i=1
n
E[Z]€7HA6 _ H E[ez\zi] . efn/\e
i=1
Using convexity and a Taylor Expansion we get derive
E[e)\w} < Ry

If x € [a,b] with b —a = 1, then E[z] = 0.

E[z]e—n,\e — enA?/o—ne

2
P(ii > < mi n(2-—Xe)
(> 9 < mige



Taking the derivative to minimize we find that A = 4e, so
P(ﬂ Z 6) § 672n62

and symmetrically

P(i < —e) < e=2ne’,

= P(|Jia] > €) < 2e2¢

2.6 Confidence Intervals Revisited

We can defined a new confidence interval
(S _ 26—27L€2

log2/6
e=\—.
2n
We have shown: Vo € [0,1], wp. >1—4¢
R log2/d
i —pl < T/
n

and

2

Compare to our previous result we now have y/log1/4 versus /1/6. This result is heavily predicated by

x € [a,b] where b—a = 1.

3 Stochastic Bandits Revisited

First we want to define some convenient variables: p; = E;~,,[z] is the expected reward of arm i, T;(t) is
the number of times arm ¢ is pulled on rounds 1...t, and A; = p* — ;.

Comments:

e the exact time that the arm was pulled doesn’t matter, only T;(¢) matters

o there is a “best arm”, the one with the largest expetec reward p* = maxi<;<q ft;

We can now take our regret

T
Regret = T}« — E[Z X111, )]
t=1

and recast it as

T
Regret = T),« — E[Z ]
t=1

d
Regret = Z AGE[T; ()]
i=1

The goal for stochastic bandits is to bound E[T;(t)] for all 4 with A; > 0.



3.1 Algorithm

The simplest feasible algorithm is dubbed “e-first”. If we know A, a lower bound of {A; : A; > 0}.
We sample each arm O (logé#) times, estimate each u; to within A/2; and stick to the emperical best

arm henceforth.

d

log1/6

Regret < Z A; - (i!) +0O(0T) ~ O(logT)
i=1



