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Stochastic Bandits
Lecturer: Ofer Dekel Scribe: Matthias W. Smith

1 Stochastic Bandits

This is a special case of the adversarial bandits covered in a previous lecture.
Stochastic Bandits Game
for rounds 1..T

player pulls a single arm per round {1...d}
player receives reward xi

The game bakes in a few assumptions which distinguish it from the general adversarial bandits case.

• ν1, ν2, ..., νd are unknown distributions, supported on [0, 1], over reward

• pulling arm i for the s’th time results in reward xis ∼ νi and (xi1, xi2, ...) are independent

Essentially, the adversary generates the following table.

ν1 ν2 . . . νd
1 x11 x21 . . . xd1

2 x12 x22 . . . xd2

...
...

...
. . .

...
T x1T x2T . . . xdT

2 Probability Theory

Before we dive into the stochastic bandits problem, we need to take a bit of a detour through some probability
theory.

2.1 Weak Law of Large Numbers

We start by requiring that x1, ..., xn are iid and “well-behaved” random variables. Then we can define the
emprical mean as µ̂ = 1

n

∑n
i=1 xi. If we denote the expected mean µ = E[x], then µ̂ converges to µ in

probability.

Theorem 1.
∀ε > 0, lim

n→∞
P (|µ̂− µ| ≥ ε) = 0

The theorem is readily present in nearly all statistical learning theory. In order to study sample com-
plexity, we need a non-asymptotic version of the law of large numbers (LLN ).

2.2 Markov’s Inequality

Theorem 2. If x is a non-negative r.v. and ε > 0, then P(x ≥ ε) ≤ E[x]
ε
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Proof. Start with the following assertion
ε · I{x≥ε} ≤ x.

We have two possible cases, x ≥ ε and x < ε. It is fairly easy to convince yourself that the statement must
always be true. Now we proceed by taking the expectation of each side.

εE[I{x≥ε}] ≤ E[x]

εP[x ≥ ε] ≤ E[x]

Thus proving Markov’s Inequality.

2.3 Chebychev’s Inequality

Theorem 3. If x is r.v. with µ = E[x] <∞ and ε > 0, then P(|x− µ|) > ε) ≤ V ar(x)
ε2 .

Proof. Define z = (x− µ)2. By definition we can write

P(|x− µ|) ≡ P(z ≥ ε2),

and by Markov’s Inequality

P(z ≥ ε2) ≤ E[z]

ε2
.

Assume without losing generality that µ = 0. Noting that we could always define a new random variable
y = x− µ where E[y] = 0 now.

Theorem 4. Assume µ = 0, then z = x2 and

P(|x| ≥ ε) = P(z ≥ ε2) ≤ E[x2]

ε2
.

Proof. Use the Weak LLN with µ = 0, assuming µ̂ = 1
n

∑n
i=1 xi, x1...xn are iid and E[x2

i ] <∞. By definition
we get the first relation

E[µ̂2] = E[(
1

n

n∑
i=1

xi)
2].

Now use the fact that xi is a generic random variable and recast its squared sum as multiplication of two
random variables to get

E[µ̂2] =
1

n2
E[

n∑
i=1

n∑
j=1

xixj ].

Separating terms in which i = j and i 6= j,

E[µ̂2] =
1

n2

n∑
i=1

E[x2
i ] +

∑
i6=j

E[xixj ].

Now we can eliminate the second term by using the linearity of expectation and the fact that we have defined
µ = 0.

E[xixj ] = E[xi]E[xj ] = 0 · 0

E[µ̂2] =
1

n2

n∑
i=1

E[x2
i ] =

1

n
E[x2]
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Plugging back into the bound given by Chebychev’s Inequality we get

⇒ P(|µ̂− µ| ≥ ε) ≤ E[x2]

nε2
.

And as n→∞
E[x2]

nε2
→ 0

2.4 Confidence Intervals

These are all over the place in Machine Learning. Define δ = E[x2]
nε2 , and similarly ε =

√
E[x2]
δn . The term is

denoted the confidence and it is defined on ∀δ ∈ [0, 1]. With probability (w.p.) ≥ 1− δ

|µ̂− µ| ≤
√

E[x2]

δn

In diagram form the relation is shown below.

0 1

µ−O(
√

1/n) µ+O(
√

1/n)

µ

2.5 Hoeffding-Azuma Inequality

Theorem 5. Instead of plugging in the 2nd moment (E[x2]) into Markov’s Inequality use the “exponential
moment”, z = eλ

∑
i=0 nxi , to get

P(µ̂ > ε) = P(z ≥ enλε)

Proof. Using Markov’s Inequality on the righthand side we have

P(z ≥ enλε) ≤ E[z]e−nλε.

We can substitute for z and turn the sum into a pi-product since it is in the exponent to get

E[z]e−nλε = E[

n∏
i=1

eλxi ] · e−nλε.

E[z]e−nλε =

n∏
i=1

E[eλxi ] · e−nλε

Using convexity and a Taylor Expansion we get derive

E[eλx] ≤ eλ
2/δ.

If x ∈ [a, b] with b− a = 1, then E[x] = 0.

E[z]e−nλε = enλ
2/δ−nλε

P(µ̂ > ε) ≤ min
λ>0

en(λ
2

δ −λε)
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Taking the derivative to minimize we find that λ = 4ε, so

P(µ̂ ≥ ε) ≤ e−2nε2

and symmetrically

P(µ̂ ≤ −ε) ≤ e−2nε2 .

⇒ P(|µ̂| > ε) ≤ 2e−2nε2

2.6 Confidence Intervals Revisited

We can defined a new confidence interval
δ = 2e−2nε2 .

and

ε =

√
log 2/δ

2n
.

We have shown: ∀δ ∈ [0, 1], w.p. ≥ 1− δ

|µ̂− µ| ≤
√

log 2/δ

2n

Compare to our previous result we now have
√

log 1/δ versus
√

1/δ. This result is heavily predicated by
x ∈ [a, b] where b− a = 1.

3 Stochastic Bandits Revisited

First we want to define some convenient variables: µi = Ex∼νi [x] is the expected reward of arm i, Ti(t) is
the number of times arm i is pulled on rounds 1...t, and ∆i = µ∗ − µi.
Comments:

• the exact time that the arm was pulled doesn’t matter, only Ti(t) matters

• there is a “best arm”, the one with the largest expetec reward µ∗ = max1≤i≤d µi

We can now take our regret

Regret = Tµ∗ − E[

T∑
t=1

XIt,TIt (t)
]

and recast it as

Regret = Tµ∗ − E[

T∑
t=1

µIt ]

Regret =

d∑
i=1

∆iE[Ti(t)].

The goal for stochastic bandits is to bound E[Ti(t)] for all i with ∆i > 0.
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3.1 Algorithm

The simplest feasible algorithm is dubbed “ε-first”. If we know ∆, a lower bound of {∆i : ∆i > 0}.
We sample each arm O

(
log(1/δ)

∆2

)
times, estimate each µi to within ∆/2, and stick to the emperical best

arm henceforth.

Regret ≤
d∑
i=1

∆i ·
(

log 1/δ

∆2

)
+ Θ(δT ) ∼ Θ(log T )
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