CSE599s, Spring 2014, Online Learning	Lecture 16-05/22/2014
Online Convex Optimization with Bandit Feedback	
Lecturer: Brendan McMahan	Scribe: Durmus Karatay

1 The Game

We will analyze a general online convex optmimization problem, where we have a convex set \mathcal{W} and a sequence of loss functions $f_{t}: \mathcal{W} \rightarrow \mathbb{R}$. However, the feedback that the player gets is a bandit feedback. The player only sees $f_{t}\left(w_{t}\right)$ in each round.

Bandit Gradient Descent Game
choose parameters η, α, δ where $\alpha \in[0,1]$.
$v_{1}=0 \in \mathcal{W}$
for $t=1,2, \ldots, T$
\quad choose unit vector $u_{t} \in \mathbb{R}^{d}$ uniformly at random
\quad assign $w_{t}=v_{t}+\delta u_{t} \in \mathcal{W}$
\quad play w_{t}, observe $f_{t}\left(w_{t}\right)$
$\quad v_{t+1}=\prod_{(1-\alpha) \mathcal{W}}\left(v_{t}-\eta \hat{g}_{t}\right)$, where $\hat{g}_{t}=\frac{d}{\delta} f_{t}\left(w_{t}\right) u_{t}$

Note: Projection to $(1-\alpha) \mathcal{W}$ is required to make sure that w_{t} stays inside the convex set.

Figure 1: Graphical Interpretation of the Bandit Gradient Descent Game

2 Regret Bound of Bandit Gradient Descent

The regret bound for online linear optimization is $\mathcal{O}(\sqrt{T})$ and the regret bound for the experts algorithm is $\mathcal{O}(\sqrt{T \log d})$. The expected regret is calculated for the bandit gradient descent game, since it is uniformly randomized:

$$
\mathbf{E}[\text { Regret }] \leq \mathcal{O}\left(T^{\frac{3}{4}}\right)
$$

3 Analysis

We will need two tricks to analyze the algorithm: (1) one point gradient estimation and (2) expected gradient-descent.

3.1 One Point Gradient Estimation

Lemma 1. $|u|=1$ and choosen uniformly at random, $\delta>0$,

$$
\nabla \hat{f}(x)=\mathbf{E}\left[\frac{d}{\delta} f(v+\delta u) u\right]
$$

Proof. When d $=1, u \in[-1,+1]$,

$$
\begin{align*}
\mathbf{E}\left[\frac{1}{\delta} f(v+\delta u) u\right] & =\frac{1}{2} \frac{f(v+\delta)}{\delta}-\frac{1}{2} \frac{f(v-\delta)}{\delta} \tag{1}\\
& \cong f^{\prime}(v) \tag{2}
\end{align*}
$$

It follows that

$$
\begin{align*}
\hat{f}(x) & =\mathbf{E}[f(v+\delta u)], \tag{3}\\
\nabla \hat{f}(x) & =\mathbf{E}\left[\frac{d}{\delta} f(v+\delta u) u\right], \text { where } u:\|u\|^{2}<1 \tag{4}
\end{align*}
$$

\hat{f} is the smoothed version f. Note that \hat{f} is differentiable even though f is not.

3.2 Expected Gradient Descent

Regret bound for online gradient descent is:

$$
\begin{align*}
& \sum_{t=1}^{T} f_{t}\left(w_{t}\right)-\min _{u \in W} \sum_{t=1}^{T} f_{t}(u) \leq \frac{B^{2}}{\eta}+\eta \frac{G^{2} T}{2}, \text { where } \eta=B G \sqrt{T} \tag{5}\\
& \sum_{t=1}^{T} f_{t}\left(w_{t}\right)-\min _{u \in W} \sum_{t=1}^{T} f_{t}(u) \leq B G \sqrt{T} \tag{6}
\end{align*}
$$

Lemma 2. In the randomized version, every round we will get $\hat{g}_{t}=\frac{d}{\delta} f_{t}\left(w_{t}\right) u_{t} . \quad \mathbf{E}\left[g_{t}\right]=\nabla f\left(v_{t}\right)$ and $\left\|g_{t}\right\|<G$. For optimum η :

$$
\mathbf{E}\left[\sum_{t=1}^{T} f_{t}\left(w_{t}\right)\right]-\min _{u \in W} \sum_{t=1}^{T} f_{t}(u) \leq B G \sqrt{T} .
$$

Proof.

$$
\begin{align*}
h_{t}(w) & =f_{t}(w)+w\left(\hat{g}_{t}-\nabla f_{t}\left(w_{t}\right)\right), \tag{7}\\
\left.\nabla_{w} h_{t}(w)\right|_{w=w_{t}} & =\nabla f_{t}\left(w_{t}\right)+\hat{g}_{t}-\nabla f_{t}\left(w_{t}\right), \tag{8}\\
& =\hat{g}_{t} \tag{9}
\end{align*}
$$

Online gradient descent on the random function h_{t} is equal to expected gradient descent on the fixed functions f_{t}.

