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Game theory is a study of strategic decision making where a set of rational players are playing against each
other. Let’s consider a zero-sum two-player game where each player’s gain or loss is balanced by the loss or
gain of the other player. Player I chooses her action from an action set, i.e., i ∈ {1, 2, . . . ,m} and player II
chooses his action j ∈ {1, 2, . . . , n}. The game’s payoff matrix is denoted by M and is a representation of
loss or gain of players. For example player I pays Mij to player II.

Min-Max Theorem

Based on Min-Max Theorem we have

min
p∈∆(m)

max
q∈∆(n)

pTMq = max
q∈∆(n)

min
p∈∆(m)

pTMq,

where player II has the privilege of playing second and see what player I has chosen. Also, note that since
p ∈ ∆(m) and q ∈ ∆(n) the objective function is equivalent to the expected value of Mij where i and j are
drawn from the probability distributions p and q respectively.
Let’s consider the worst case where the player plays against an adaptive all knowing adversary which tries
to maximize the regret. The number of rounds T is known and fixed.

min
w1

max
g1

min
w2

max
g2

. . .min
wT

max
gT

[

T∑
t=1

gt.wt − min
u∈W

g1:T .u] = VT ∈ R,

where W = {w| ‖w‖2 ≤ B}, wt ∈ Rd, gt ∈ G̃, and G̃ = {g| ‖g‖2 ≤ G} which is a convex set. The cost of the
best fixed comparator can be expressed as

min
‖u‖2≤B

g1:T .u = −B max
‖u‖2≤1

g1:T .u = −B ‖g1:T ‖∗ = −B ‖g1:T ‖2 ,

Min-Max Adversary

The adversary follows the following strategy:

‖gt‖ = G, gt.wt = 0, gt.g1:t−1 = 0,

which implies
∑T

t=1 gt.wt = 0 and subsequently

VT = − min
u∈W

g1:T .u = B ‖g1:T ‖2

In order to find a the regret bound we need the following lemmas.
Lemma 1: there exist x, y ∈ R such that x.y = 0, then

‖x+ y‖ =

√
‖x‖2 + ‖y‖2.

Proof. We have
‖x+ y‖2 = (x+ y).(x+ y) = x2 + 2x.y + y2 = ‖x‖2 + ‖y‖2 ,

and the statement of the lemma follows.
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Based on Lemma 1 we can provide a bound on ‖g1:t‖ in the following lemma.
Lemma 2: for any t ∈ {1, 2, . . . } we have ‖g1:t‖ = G

√
t.

Proof. The proof by induction is used. We know that ‖g1‖ = G. Suppose that ‖g1:t−1‖ = G
√
t− 1, thus

based on lemma 1 we have

‖g1:t‖ = ‖g1:t−1 + gt‖ =
√
G2(t− 1) +G2 = G

√
t.

Therefore, the adversary gets at least VT = BG
√
T . Note that the regret for Online Gradient Descent

(OGD)is bounded as

∀u, Regret(u) ≤ ‖u‖
2

2η
+
η

2

T∑
t=1

g2
t ,

where with η = B
G
√
T

the regret bound is BG
√
T . Therefore, the player has two choices:

1) OGD with fixed learning rate η = B
G
√
T

.

2) OGD with adaptive learning rate

ηt =
B√

‖g1:t‖2 +G2(T − t)
.

Note that

wt+1 = −ηtg1:t ⇒ ‖wt+1‖ = ηt ‖g1:t‖ ≤
B√
‖g1:t‖2

‖g1:t‖ ⇒ ‖wt+1‖ ≤ B,

which implies that the projected OGD is equivalent to OGD against a min-max adversary and the best
strategy is to use OGD.
In addition, since

∀u, Regret(u) ≤ ‖u‖
2

2η
+
η

2

T∑
t=1

g2
t ,

we have

loss ≤ min
u∈W

(g1:T .u+
‖u‖2

2η
) +

η

2

T∑
t=1

g2
t = −η

2
(g2

1:T −
T∑

t=1

g2
t ),

and the following theorem provides the exact loss for OGD.

Theorem 1. The loss of OGD algorithm is

loss = −η
2

(g2
1:T −

T∑
t=1

g2
t ).

Proof. We know that

loss =

T∑
t=1

gt.wt,

and based on the update rule in OGD we have wt = −ηg1:t−1 and subsequently

loss =

T∑
t=1

gt.(−ηg1:t−1) = −η
T∑

t=1

gt.g1:t−1.

Moreover, since
∑T

t=1 gt.g1:t−1 = 1
2 (g2

1:T −
∑T

t=1 g
2
t ), the statment of the theorem follows.
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We can show that the loss in the above theorem satisfies the regret bound for OGD. Based on the
definition of regret for a comparator u we have

Regret = loss−g1:T .u = −η
2

(g2
1:T −

T∑
t=1

g2
t )− g1:T .u,

Thus,

Regret ≤ η

2

T∑
t=1

g2
t + max

z∈Rd
(−η

2
z2 − z.u) =

‖u‖2

2η
+
η

2

T∑
t=1

g2
t .

Generally, any algorithm for online linear algorithm results in

loss ≤ −ψ(g1:T ) ∀g1, g2, . . . , gT

if and only if
Regret(u) ≤ ψ∗(u) ∀u ∈ Rd,

where the convex conjugate of ψ(u) is defined as

ψ∗(u) = max
g∈Rd

g.u− ψ(u)
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