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Convexity, Online Gradient Descent
Lecturer: Brendan McMahan Scribe: Marco Tulio Ribeiro

1 Review - Definitions

Here are some definitions and nomenclature that may be used interchangeably:

• wt ∈W → model, feasible point, strategy, point, play.

• u ∈W → comparator.

• Regret =
∑
t ft(wt)− min

u∈W

∑
t

ft(u).

• Regret(u) =
∑
t ft(wt)− ft(u).

If we bound this regret ∀u ∈W , we’ve bounded the first definition of regret.

2 Convexity

2.1 Definition

Lemma 1. For w ⊆ Rn, f : W → R is convex iff ∀w ∈W , ∃g ∈ Rn s.t. ∀u ∈W ,

f(u) ≥ f(w) + g.(u− w)︸ ︷︷ ︸
f̂ ,linear approximation to f

. (1)

Note that f̂ is always a lower bound for f if f is convex, as illustrated in the figure below.

Definitions:

• g is a subgradient of f at w if inequality (1) holds.

• ∂f(w)→ subdifferential of f at w, or set of subgradients.

Facts about subgradients:

• If f is differential, ∂f(w) = {∇f(w)}.

• 0 ∈ ∂f(w) ⇐⇒ w ∈ argmin
w

f(w).
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• For a ∈ ∂f(w), b ∈ ∂h(w) and φ = cf(w) + dh(w),
ca+ db ∈ ∂φ(w).

If we have a function f such that f : W → R, and we want to extend its tomain to be Rn (so that we

can feed it to an optimization algorithm for example), it is useful to define f̂ such that

f̂ : Rn → {R,+∞}

f̂(w) =

{
f(w) w ∈W,
+∞ otherwise.

Note that for all practical purposes (optimization), f̂ maintains the properties of f . Particularly, if f is

convex, f̂ is also convex.

2.2 Convex set

Lemma 2. W ∈ Rn is convex if ∀w, v ∈W and ∀α ∈ [0, 1], αv + (1− α)w ∈W

Examples of convex sets:

• W = {w | ‖w‖ ≤ R} → norm ball.

• W = {w |Aw ≤ b}.

Lets say we want to minimization over a certain parameter w ∈ W , where W is a convex set. We may
want to set the objective function to min

w∈Rn
, in order to use optimization algorithms that operate over Rn.

For this purpose, we define the following indicator function:

Iw(w) =

{
0 w ∈W,

+∞ otherwise.
(2)

Note now that the following two optimization objectives are equivalent:

min
w∈W

f(w) = min
w∈Rn

f(w) + Iw(w). (3)
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3 Algorithm

For t = 1, ..., T :

• algorithm selects wt.

• adversary chooses ft.

• suffer loss ft(wt).

• Transformation:

f̂t(w) = ft(wt) + gt(w − wt) , for gt ∈ ∂ft(wt).

• Give f̂t to an algorithm for Online Linear Optimization (OLO), such as FTRL.

• wt+1 = output of OLO.

For this algorithm to work, we need two things:

1. f̂t(wt) = ft(wt) (True by definition).

2. ∀u, f̂t(u) ≤ ft(u) (See convexity definition).

Note that from 2., we can get the following bound by just plugging in inequalities:

T∑
t=1

ft(wt)− ft(u)︸ ︷︷ ︸
Regret(u;f)

≤
T∑
t=1

f̂t(wt)− f̂t(u)︸ ︷︷ ︸
Regret(u;f̂)

≤ O(
√
T ). (4)

This bound means that the regret of the original convex function f is bounded by the regret on the
modified linear function f̂ , if the same wt is played for both at each turn. Since we have bounded the regret
of linear functions with FTRL before (O(

√
T )), this bound now holds for any convex function when we apply

this algorithm.

4 Online Gradient Descent

Noting that we can write f̂t(w) = gt.w for gt ∈ ∂ft(wt), and considering the bound given on Equation 4,
and the previous formulation of FTRL, we get the following algorithm:
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w1 = 0.
for t ∈ T :

• Observe ft.

• Find gt ∈ ∂ft(wt).

• wt+1 = wt − ηgt.

Note that this is what we would use in practice, and it is the same as applying the algorithm defined in
Section 3, using FTRL as the OLO algorithm.

Corollary 3. If all ‖gt‖2 ≤ G, Regret(u; f1...fT ) ≤ 1
2η ||u||

2
2 + ηTG2.

This regret bound comes straight from the previous analysis for FTRL on linear functions.

5 Strong convexity

Lemma 4. A function f : W → R is σ (for σ > 0) strongly convex w.r.t. norm ‖·‖ if ∀w ∈ W ;∀g ∈
∂f(w);∀u ∈W :

f(u) ≥ f(w) + g.(u− w) +
σ

2
‖u− w‖2 . (5)
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