
CSE599s, Spring 2014, Online Learning Lecture 5 - 04/15/2014

FTRL with Arbitrary Strongly Convex Regularization and Experts
Lecturer: Brendan McMahan and Ofer Dekel Scribe: Christopher Lin

1 Strong Convexity

A function f is σ−strongly convex with respect to a norm || · || iff for all w ∈ W and g ∈ ∂f(w), we have
that for all u, f(u) ≥ f(w) + g(u− w) + σ

2 ||u− w||
2.

1.1 Properties

• Let f1, f2 be functions that are σ1−, σ2− strongly convex. If for some a, b ≥ 0, f3 = af1(w) + bf2(w),
then f3 is aσ1 + bσ2 strongly convex.

• Let w∗ = argminw f(w), where f is σ−strongly convex. Then f(w) − f(w∗) ≥ σ
2 ||w − w

∗||2, by the
fact that 0 ∈ ∂f(w∗) and the definition of strong convexity.

1.2 Examples

• R(w) = σ
2 ||w||

2
2 is strongly convex. It has a quadratic lower bound that is tight at every chosen point.

• R(w) = σ
2 ||w||

2
2 + IW (w) is strongly convex where IW is the indicator function on a convex set W such

that IW (w) = 0 when w ∈W and ∞ otherwise.

2 Norms

A norm is a function || · || such that for all w ∈ Rn, we have

• ||w|| ≥ 0

• ||w|| = 0 iff w = 0

• For all w and for all a ∈ R, ||aw|| = |a| ||w||

• For all u,w, ||u+ w|| ≤ ||u||+ ||w||.

2.1 Examples

• The l2-norm L2 is ||w||2 =
√∑n

i=1 w
2
i .

• The l1-norm L1 is ||w||1 =
∑
i |wi|

• The L∞ norm is ||w||∞ = maxi |wi|.

We have ||w||1 ≥ ||w||2 ≥ ||w||∞. Let Bp = {w : ||w||p ≤ 1}. Then, p = 1 is the unit diamond, p = 2 is
the unit circle, p =∞ is the unit square.
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2.2 Dual Norm

Given an arbitrary norm || · ||, the dual norm || · ||∗ is ||g||∗ = maxw:||w||≤1 wg. The dual norm is a norm,
and the dual of || · ||∗ is || · ||.

Holder’s inequality : Let a, b ∈ Rn. Then, a·b ≤ maxw:||w||≤1(a·||b||w) = ||b||maxw:||w||≤1 a·w = ||b||||a||∗.
(Let w = b/||b||.)

3 Analyzing FTRL with arbitrary strongly convex regularizations

FTRL selects wt = argminw
∑t−1
s=1 fs(w) + R(w) where R is σ−strongly convex with respect to the norm.

Define Ft(w) = f1:t−1(w) +R(w) for convenience. Using the definition and the fact that the sum of a convex
and a strongly convex function is strongly convex, we have

Ft(wt+1)− Ft(wt) ≥
σ

2
||wt+1 − wt||2

and

Ft+1(wt)− Ft+1(wt+1) ≥ σ

2
||wt+1 − wt||2.

Summing the inequalities, we get ft(wt)−ft(wt+1) ≥ σ||wt+1−wt||2. Then, apply the definition of convexity
to ft to get ft(wt)−ft(wt+1) ≤ gt(wt−wt+1) ≤ ||gt||∗||wt−wt+1|| for some gt ∈ ∂ft(wt). Then, ||wt−wt+1|| ≤
||gt||∗/σ. Plugging this bound into the above bound, we get ft(wt)−ft(wt+1) ≤ ||wt−wt+1||||gt||∗ ≤ 1

σ ||gt||
2
∗.

Theorem FTRL, with a σ-strongly convex R, arbitrary convex ft. Then for all u ∈ Rn,

Regret(u) ≤ R(u) +
1

σ

T∑
t=1

||gt||2∗.

4 Recap

Optimization is when you optimize one single function. Statisical Machine Learning is when the functions
are sampled from a distribution. Online Learning is when the functions are totally arbitrary, which is much
more awesome.

5 Online Learning With Expert Advice

We play the following game. For t = 1, . . . , T :

• Receive input from d experts

• Choose one expert and follow his advice

– Specifically, choose a distribution pt ∈ ∆d = {p ∈ Rd, pi ≥ 0,
∑d
i=1 pi = 1}.

– draw It (the index of the expert you listen to) from pt.

• Observe the loss of each expert `t,1, . . . , `t,d ∈ [0, 1]d

• Incur loss `t,It .
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The cumulative expected loss is E[
∑T
t=1 `t,It ]. The oblivious adversary defines all the losses ahead of

time. The regret is a comparison to the best fixed expert in hindsight, defined to be E[
∑T
t=1 `t,It ] −

mini∈{1,...,d}
∑T
t=1 `t,i. Note that we compare to the performance of a single expert, rather than to an

arbitrary convex combination of experts. In game theory, the former is called a pure strategy, while the
latter is called a mixed strategy. In this case, the best pure strategy is just as good as the best mixed
strategy, and there is no advantage to taking combinations of experts.

We see that experts is a special case of online convex optimization:

• E[`t,It ] =
∑d
i=1 pt,i`t,i = pt`t. So we let ft(p) = p · `t (linear loss functions).

• Regret ≤
∑T
t=1 pt · `t −minp∈∆d

∑T
t=1 p · `t.

Previously proved theorem: Let f1, . . . , fT be the convex functions, and we play w1, . . . , wT ∈ Rn
generated with FTRL with R(w) (minR(w) = 0), and g1, . . . , gT are subgradients gt ∈ ∂ft(wt). For any
norm || · ||, let σ,G be constants such that for all t, ||gt||∗ ≤ G and R is σ-strongly convex with respect to
|| · ||, then the Regret(u) ≤ R(u) + TG2/σ.

5.1 First attempt to solve experts

Run FTRL with R(p) = 1
2η ||p||

2
2 + I∆d

(p). Apply theorem with || · ||2:

• The gradient is just the vector of losses, gt = `t. So G = maxt=1,...,T ||`t||2 ≤
√
d. This bound G is

very slack - we are bounding a quarter of the unit square with a unit circle.

• R(p) is 1
η -strongly convex with respect to || · ||2 because 1

2 ||w||
2
2 is 1-strongly convex with respect to

||w||22.

Then, we have that Regret(q) ≤ 1
2η ||q||

2
2 + I∆d

(q) + Tdη = 1
2η + Tdη. Since the best η is 1√

2dT
, we get a

regret upper bounded by
√

2dT .
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