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The Multi-armed Bandit Problem
Lecturer: Ofer Dekel Scribe: Saghar Hosseini

1 Recap: Follow the Regularized Leader with Entropic Regular-
izer in the Probability Simplex

Recall the problem of learning with expert advice. Let d be the number of experts. At each round t, the
player can choose one expert It and observe the loss of all experts if they would have been chosen. This is
a full feedback problem and the following algorithm was presented in the previous lecture to minimize the
expected regret.

for t = 1, 2, . . . , T do
pt = arg minp∈Rd{pl1:t−1 + 1

η

∑d
i=1(pi log pi + log d) + I∆d(p)}

Draw It ∼ pt, and incur loss lt,It
Observe lt ∈ [0, d]d

end for

Moreover, the Exponentiated Gradient (EG) algorithm has been introduced to solve this problem:

Initialize w1 = (1, 1, . . . , 1)
for t = 1, 2, . . . , T do

Define pt = wt
||wt||

Draw It ∼ pt, and incur loss lt,It
Observe lt ∈ [0, d]d

for i = 1, 2, . . . , d do

Update wt+1,i = wt,ie
−ηlt,i = e−η

∑t−1
s=1 ls,i

end for
end for

In some problems when the player choses one arm/experts he/she does not observe the whole loss vector
lt ∈ [0, d]d . The player can only observe the loss associated with the expert that was chosen, i.e. lt,It , and
this is called a Bandits problem. In the next section, a method is presented to relate the ”multi-arm bandits
problem” to the ”Experts” problem.

2 A (general) Reduction from ”Bandits” to ”Experts”

Blocking

Choose a block size B assuming that B divides T . Note that we are still assuming that the problem is in full

feedback mode. In addition, let’s assume we have a ”Experts” algorithm called A with regret bound c
√
T
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where c is a constant value.
We can present the blocks by an index set {1, 2, . . . , T/B}. Suppose player invokes algorithm A once per
each block which means it chooses only one expert throughout of each block b ∈ {1, 2, . . . , T/B}. Therefore,
when we run algorithm A, we choose an expert Ib from a probability vector pb and play Ib throughout block
b namely on t = B(b− 1) + 1, . . . , Bb. Note that |{B(b− 1) + 1, . . . , Bb}| = B.
Now, we choose τb uniformly at random from {B(b−1)+1, . . . , Bb}. Since algorithm A performs well on any
arbitrarely sequence of {lk} and its regret is bounded by c

√
T , We know that the regret on lτ1 , lτ2 , . . . , lτT/B

is bounded as
T/B∑
b=1

pblτb − min
p∈∆d

T/B∑
b=1

pblτb ≤ c
√
T/B.

If we take the expectation of both side of the above inequality we have

T/B∑
b=1

pbE[lτb ]− min
p∈∆d

T/B∑
b=1

pbE[lτb ] ≤ c
√
T/B.

Moreover, we know that

E[lIτb ] =
1

B

bB∑
t=B(b−1)+1

lt,

Thus, if we plug in E[lτb ] in the regret bound we have

1

B
(

T/B∑
b=1

Bb∑
t=B(b−1)+1

pblt − min
p∈∆d

T∑
t=1

plt) ≤ c
√
T/B.

which implies

1

B
(

T∑
t=1

E[lt,It ]− min
p∈∆d

T∑
t=1

plt) ≤ c
√
T/B.

Note that It = Ib when b is the block that contains t. Therefore, the expected regret is bounded as

Regret =

T∑
t=1

E[lt,It ]− min
p∈∆d

T∑
t=1

plt ≤ c
√
BT.

Suppose we chose distinct τb,1, τb,2, . . . , τb,d, all in {B(b− 1) + 1, . . . , Bb} uniformly, where B ≥ d. In other
words, at the end of each block b, algorithm A observes the loss [lτb,1 , lτb,2 , . . . , lτb,d ]T . Thus, we have

E[lτb,i ] =
1

B

bB∑
t=B(b−1)+1

lt,i for all i ∈ {1, . . . , d}.

Bandit Feedback

In this section we assume the problem is in ”Bandits” mode. In order to observe lt,i, we must choose expert
i on round t. Therefore, we explore on d rounds in block b and we exploits on B − d of the rounds, i.e., we
play Ib suggested by algorithm A for B − d rounds. Since lt,i ∈ [0, 1]d the cost of exploration on d rounds is
upper bounded as

Experts loss on exploration ≤ T

B
d,

and subsequently we have

Experts loss ≤ E[lt,Ib ] +
T

B
d,
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which implies

Regret =≤ c
√
BT +

T

B
d.

Now, we need to find B such that it minimizes c
√
BT + T

Bd. By setting the gradient of c
√
BT + T

Bd with
respect to B to zero, we have

1

2
c
√
TB−1/2 − TdB−2 = 0

⇒ B = (
2d

c
)2/3T 1/3.

Since Regret ≤ O(T 2/3), the algorithm has to run for T 2/3 rounds to achieve the desired accuracy. Note that
this approach only works in oblivious adversary setting. An example for this type of problem is showing one
news story at each day on yahoo page.
An algorithm to solve the multi-arm bandits problem is called EXP3 algorithm which is similar to EG
algorithm. In EXP3 algorithm the player chooses It and observes lt,It . Then, he/she constructs an unbiased

estimate of lt named l̂t:

l̂t =



0
0
...

lt,It/pt,It
...
0


,

where the non-zero element of l̂t is associated with expert It. Note that we are very optimistic regarding the
experts that are not playing. Moreover, we have

E[l̂t,i|pt] = lt,i for all i ∈ {1, . . . , d}.

Therefore the EXP3 algorithm can be presented as

Initialize w1 = (1, 1, . . . , 1)
for t = 1, 2, . . . , T do

Define pt = wt
||wt||

Draw It ∼ pt
Observe lt,It ∈ [0, d]d

Construct l̂t = [0, 0, . . . , lt,It/pt,It , . . . , 0]
for i = 1, 2, . . . , d do

Update wt+1,i = wt,ie
−ηl̂t,i

end for
end for

Analysis

Let’s pretend that the adversary chose l̂1, . . . , l̂T . Therefore, for any constant vector q ∈ ∆d we have

E[

T∑
t=1

l̂t(pt − q)] ≤ R(q) + η

T∑
t=1

||l̂t||2∞,

where R is a strongly convex regularization function and η is the learning rate. Since ||l̂t||∞ ≤ G, we have

E[

T∑
t=1

l̂t(pt − q)] ≤ R(q) + ηTG2.
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Note that random vector pt ∈ ∆d is Ft − 1-measurable, where Fk is a σ-field and

F1 ⊂ F2 ⊂ . . .FT

In addition, random vector l̂t ∈ Rd is Ft-measurable and subsequently

E[l̂tpt] 6= E[l̂t]E[pt]

To be continued ...
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