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Topics in Probabilistic and 
Statistical Databases 

Dan Suciu 
University of Washington 

Lecture #1: Overview 



This Course 

•  Advanced course on a special research topic 
•  I will give all lectures 
•  There will be recommended readings 
•  Your immediate goal: think, ask, discuss 
•  Your longer term goal: find great new 

research topics 
•  Credits: attendance + discussions 
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Communication 

•  http://www.cs.washington.edu/education/
courses/cse599t/CurrentQtr/ 

•  Need a volunteer TA for: 
– Setting up the mailing list 
– Regular updates to the Website 
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Prerequisites 

I will assume the following: 
•  Some background in databases 
•  Some background in probability theory 
But I will review, when details are needed 

What you will see: 
•  Some out of order presentation 
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Motivation 

•  CS is increasingly dominated by data 

•  The new data has two trends: 
– Too large to process in traditional way 

•  Data from the Web, physical world, science 
– Too imprecise to model in traditional way 

•  Data extraction, measurement errors 
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Motivation 

•  Data management needs to produce the 
techniques to manage large, imprecise data 

•  Has been doing this for a while: 
– Data statistics, data sketches 
– Ranking query results 
– Approximate query answering 
– Data anonymization 
– Probabilistic databases 
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My 1st Goal for This Course 

•  Comprehensive treatment of the technical 
material in probabilistic databases; resource for 
teaching probdb 
– Should be able to achieve goal 1 better than 2 and 3 

•  What you will see: 
– Technical detail on the slides 
– But: difficult to prepare about 80 slides / course,  may 

have to use whiteboard extensively 
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My 2nd Goal for This Course 

•  Position probabilistic databases as a 
common foundation for a heterogeneous 
collection of techniques 
– Warning: I probably wont achieve this goal… 

•  What you will see: 
–  I will discuss some related topics in an attempt 

to show how they fit under the probdb umbrella 
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My 3rd Goal for This Course 

•  Place probabilistic databases in the right 
context 
–  Intellectual roots: probability theory and 

statistics, finite model theory, random graphs 
– Many neighboring areas in databases 

•  What you will see: 
– Digressions into other topics 
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Course Outline 

1. Overview 
2. Representation of Probabilistic Databases 
3-4-5. Query Evaluation, Ranking 
6. Query evaluation in Random Graphs 
7. Probabilistic logic, Conditional logic 
8-9. Approximate query processing  
10. Review, discussions 
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Today’s Lecture 

•  Definition of a probabilistic database 

•  Three classes of applications 
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Probabilistic Databases 

Notations: 

•  R = a relational schema 

•  D = a finite domain 

•  Inst = the (finite) set of all R-instances on D 
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Background: Relational Data 

•  Relational schema R = set of relation names 
with attributes 

•  Relational instance I over schema R = set of 
relations 
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Likes(Drinker, Beer),  Frequents(Drinker, Bar),  Serves(Bar, Beer) 

Drinker Beer Drinker Bar 

Bar Beer 
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The Definition 
The set of all possible database instances: 

Inst = {I1, I2, I3, . . ., IN} 

Definition A probabilistic database PDB = (Inst, Pr) 
is a discrete probability distribution: 

s.t. ∑i=1,N Pr(Ii) = 1 Pr : Inst ! [0,1] 

Definition A possible world is I s.t. Pr(I) > 0 
A possible tuple is a tuple t 2 I, for a possible world I 

Sample  
space (Ω) 
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Example 
Customer
 Address
 Product

John
 Seattle
 Gizmo

John
 Seattle
 Camera

Sue
 Denver
 Gizmo


Pr(I1) = 1/3 

Customer
 Address
 Product

John
 Boston
 Gadget

Sue
 Denver
 Gizmo


Customer
 Address
 Product

John
 Seattle
 Gizmo

John
 Seattle
 Camera

Sue
 Seattle
 Camera


Customer
 Address
 Product

John
 Boston
 Gadget

Sue
 Seattle
 Camera


Pr(I2) = 1/12 

Pr(I3) = 1/2 
Pr(I4) = 1/12 

Possible worlds =  {I1, I2, I3, I4} 

PDB = 
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Tuples as Events 

One tuple t   ) event t 2 I 

Two tuples t1, t2  ) event t1 2 I Æ t2 2 I 

Pr(t) = ∑I: t 2 I Pr(I) 

Pr(t1 t2
) = ∑I: t1 2 I Æ t2 2 I Pr(I) 
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Tuple Correlation 

Pr(t1 t2) = 0 Disjoint 

Pr(t1 t2) < Pr(t1) Pr(t2) Negatively correlated 

Pr(t1 t2) = Pr(t1) Pr(t2) Independent 

Pr(t1 t2) > Pr(t1) Pr(t2) Positively correlated 

Pr(t1 t2) = Pr(t1) = Pr(t2) Identical ++ 

- 

+ 

-- 

0 
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Example 
Customer
 Address
 Product

John
 Seattle
 Gizmo

John
 Seattle
 Camera

Sue
 Denver
 Gizmo


Pr(I1) = 1/3 

Customer
 Address
 Product

John
 Boston
 Gadget

Sue
 Denver
 Gizmo


Customer
 Address
 Product

John
 Seattle
 Gizmo

John
 Seattle
 Camera

Sue
 Seattle
 Camera


Customer
 Address
 Product

John
 Boston
 Gadget

Sue
 Seattle
 Camera


Pr(I2) = 1/12 

Pr(I3) = 1/2 
Pr(I4) = 1/12 

++ 

- 

+ 

-- 

-- 

PDB = 



Example: 
Disjoint-Independent Databases 
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Definition A PDB is disjoint-independent if for any set T of  
possible tuples one of the following holds: 
•  T is an independent set, or 
•  T contains two disjoint tuples 

A disjoint-independent database can be fully specified by: 
•  all marginal tuple probabilities 
•  an indication of which tuples are disjoint or independent 
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Example: 
Disjoint-Independent Databases 

Object Time Person P 

LaptopX77 9:07 
John p1 
Jim p2 

Book302 9:18 
Mary p3 

John p4 

Fred p5 

Ω={ 
Object Time Person 

LaptopX77 9:07 John 

Book302 9:18 Mary 

Object Time Person 

LaptopX77 9:07 John 

Book302 9:18 John 

Object Time Person 

LaptopX77 9:07 John 

Book302 9:18 Fred 

Object Time Person 

LaptopX77 9:07 Jim 

Book302 9:18 Mary 

Object Time Person 

LaptopX77 9:07 Jim 

Book302 9:18 John 

Object Time Person 

LaptopX77 9:07 Jim 

Book302 9:18 Fred 

Object Time Person 

LaptopX77 9:07 John 
Object Time Person 

LaptopX77 9:07 Jim 
Object Time Person 

Book302 9:18 Mary 
Object Time Person 

Book302 9:18 John 
Object Time Person 

Book302 9:18 Fred 
Object Time Person 

} 
p1p3 p1p4 

p1(1- p3-p4-p5) 

Possible 
worlds 

PDB 



Background: Queries 

•  Relational queries = formulas in FO 
•  Conjunctive query: 

 ∃y1∃y2 … ∃yk.(g1∧g2∧…∧gm) 
•  Conjunctive query notation: 

 q(x1,…,xn) :-g1, g2, …, gm 

•  Boolean query = closed formula 
•  Boolean conjunctive query: 

 q :-g1, g2, …, gm 
21 



Examples 
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∀y. (Frequents(x,y)  ∀z. (Likes(x,z)  not (Serves(y,z))) 

Likes(Drinker, Beer),  Frequents(Drinker, Bar),  Serves(Bar, Beer) 

What are these queries and what do they return ? 

∃y. (Frequents(Fred,x) and Likes(Fred,y) and Serves(x,y)) 

q(x) :- Frequents(Fred,x), Likes(Fred,y), Serves(x,y)) 

   q   :- Frequents(Fred,x), Likes(Fred,y), Serves(x,y)) 
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Query Semantics 

Given a query Q and a probabilistic database PDB, 
what is the meaning of Q(PDB) ? 
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Query Semantics 
Semantics 1: Possible Sets of Answers 
A probability distributions on sets of tuples 

8 A. Pr(Q = A) = ∑I 2 Inst. Q(I) = A Pr(I) 

Semantics 2: Possible Tuples 
A probability function on tuples 

8 t. Pr(t 2 Q) = ∑I 2 Inst. t2 Q(I) Pr(I) 
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Example: Query Semantics 
Name
 City
 Product


John
 Seattle
 Gizmo


John
 Seattle
 Camera


Sue
 Denver
 Gizmo


Sue
 Denver
 Camera


Pr(I1) = 1/3 

Name
 City
 Product


John
 Boston
 Gizmo


Sue
 Denver
 Gizmo


Sue
 Seattle
 Gadget


Name
 City
 Product


John
 Seattle
 Gizmo


John
 Seattle
 Camera


Sue
 Seattle
 Camera


Name
 City
 Product


John
 Boston
 Camera


Sue
 Seattle
 Camera


Pr(I2) = 1/12 

Pr(I3) = 1/2 

Pr(I4) = 1/12 

SELECT DISTINCT x.product 
FROM Purchasep x, Purchasep y 
WHERE x.name = 'John’  
         and x.product = y.product  
         and y.name = 'Sue' 

Possible answers semantics: 
Answer set
 Probability

Gizmo, Camera
 1/3
 Pr(I1)

Gizmo
 1/12
 Pr(I2)

Camera
 7/12
 P(I3) + P(I4)


Tuple
 Probability

Camera
 11/12
 Pr(I1)+P(I3) + P(I4)

Gizmo
 5/12
 Pr(I1)+Pr(I2)


Possible tuples semantics: 

Purchasep 



Query Semantics 

•  If q is a boolean query, then the possible 
answers and the possible tuples are 
essentially the same 

26 

Why ? 



Factoid 

•  In traditional database theory, it suffices to 
study only boolean queries 

•  But over probabilistic databases that reduction 
no longer works 

•  We study first boolean query evaluation 
(=simpler) and discuss top-k semantics later 
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Why ? 

Why ? 
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Special Case 

Pr(I) = ∏t 2 I pr(t) £ ∏t ∉ I (1-pr(t)) 

pr : Tup ! (0,1] 

Tuple independent probabilistic database 

Tup = {t1, t2, …, tM} = all possible tuples 
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Tuple Prob. ) Query Evaluation 
Name
 City
 pr

John
 Seattle
 p1


Sue
 Boston
 p2


Fred
 Boston
 p3


Customer
 Product
 Date
 pr

John
 Gizmo
 . . .
 q1


John
 Gadget
 . . .
 q2


John
 Gadget
 . . .
 q3


Sue
 Camera
 . . .
 q4


Sue
 Gadget
 . . .
 q5


Sue
 Gadget
 . . .
 q6


Fred
 Gadget
 . . .
 q7


SELECT DISTINCT x.city 
FROM Person x, Purchase y 
WHERE x.Name = y.Customer  
         and y.Product = ‘Gadget’ 

Tuple
 Probability

Seattle


Boston


1-(1-q2)(1-q3) p1(                     ) 
1- (1-                            ) 
  £(1 -         ) 

p2(                     ) 1-(1-q5)(1-q6) 
p3 q7 



Three Classes of Application 

•  Uncertain data 

•  Information Disclosure 

•  Approximate query answering 
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1. Uncertain Data 

We’ll discuss three, many more exists 

•  Ranking query answers 

•  Information extraction 

•  Fuzzy joins 

Most work on probdb has focused on this class of apps 31 



Questions to Ponder 

•  Is there a ground truth (max likelihood world) ? 

•  What do we gain by keeping multiple worlds ? 

•  Are the confidence scores indeed probabilities ? 

32 
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Ranking Query Answers 
The Empty Answers problem: 

SELECT * 
FROM Houses 
WHERE bedrooms = 4  
     AND  style = ‘craftsman’ 
     AND  district = ‘View Ridge’ 
     AND  price < 400000 

[Agrawal,Chaudhuri,Das,Gionis 2003] 

No Matches ! 



34 

Ranking: 
Compute a similarity score between a tuple and the query 

Q = SELECT * 
       FROM    R 
       WHERE A1=v1 AND … AND Am=vm 

[Agrawal,Chaudhuri,Das,Gionis 2003] 

Rank tuples by their TF/IDF similarity to the query Q 

Q = (v1, …, vm) 

T  = (u1, …, um) 

Query is a vector: 

Tuple is a vector: 

Includes partial matches 



Ranking Query Answers 
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Address Bedrooms Style District Price SimScore 
… 5 Craftsman Ravenna 300000 0.8 
… 2 Craftsman View ridge 500000 0.4 
… 4 Ranch U District 400000 0.7 
… 

SELECT * 
FROM Houses 
WHERE bedrooms = 4  
     AND  style = ‘craftsman’ 
     AND  district = ‘View Ridge’ 
     AND  price < 400000 

Are similarities 
probabilities ? 
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Adding Similarity Predicates to SQL 
Beyond a single table:  
 “Find the good deals in a neighborhood !” 

[Dalvi&S:2004] 

SELECT * 
FROM Houses x 
WHERE x.bedrooms ~ 4  AND  x.style ~ ‘craftsman’ AND x.price ~ 600k 
     AND  NOT EXISTS  
         (SELECT * 
          FROM Houses y 
          WHERE x.district = y.district AND x.ID != y.ID 
             AND y.bedrooms ~ 4 AND y.style ~ ‘craftsman’ AND y.price ~ 600k 

Users specify similarity predicates with ~ 
System combines atomic similarities using probabilities 



37 

Evaluation using a ProbDB 

[Dalvi&S:2004] 

SELECT * 
FROM Houses x 
WHERE x.bedrooms ~ 4  AND  x.style ~ ‘craftsman’ AND x.price ~ 600k 
     AND  NOT EXISTS  
         (SELECT * 
          FROM Houses y 
          WHERE x.district = y.district AND x.ID != y.ID 
             AND y.bedrooms ~ 4 AND y.style ~ ‘craftsman’ AND y.price ~ 600k 

A B S D P x.Sim A B S D P y.Sim 
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Evaluation using a ProbDB 

[Dalvi&S:2004] 

SELECT * 
FROM Houses1 x 
WHERE NOT EXISTS  
         (SELECT * 
          FROM Houses2 y 
          WHERE x.district = y.district AND x.ID != y.ID) 

A B S D P x.Sim A B S D P y.Sim 

Finally, evaluate the “rest of the query” (w/o ~) on the ProbDB 



Answer these for query ranking 
(in class) 

•  Is there a ground truth (max likelihood world) ? 

•  What do we gain by keeping multiple worlds ? 

•  Are the confidence scores indeed probabilities ? 
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ProbDB for IE Models 

•  Input: 
– Text = a collection of independent text records 
– Record = sequence of tokens x1,…,xn 

•  Set of labels A = {A1, …, AK} 
•  Ouput: 

– Segmentation = s1, …, sp 
where si = (starti, endi, labeli) 

40 

[Gupta and Sarawagi, VLDB’2006] 



ProbDB for IE Models 

Conditional Random Fields (CRF): 
•  = probability space on all segementations 

41 

52-A Goregaon West Mumbai 400 076 
Text 
record 

A possible segmentation (prob = 0.5) 

[Gupta and Sarawagi, VLDB’2006] 



ProbDB for IE Models 

Conditional Random Fields (CRF): 
•  = probability space on all segementations 
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52-A Goregaon West Mumbai 400 076 

House_no Area City Pincode Prob 
52 Goregaon West Mumbai 400 076 0.1 
52-A Goregaon West Mumbai 400 076 0.2 
52-A Goregaon West Mumbai 400 076 0.5 
52 Goregaon West Mumbai 400 076 0.2 

Text 
record 

All segmentations 

[Gupta and Sarawagi, VLDB’2006] 



ProbDB for IE Models 
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Pr(s | x, Λ) = 1/Z(x) exp(Λ · ∑j f(j,x,s)) 

Λ  =  (λi,…,λN)  =  feature weights 
f  = (fi,…,fN)   =  feature function 
j = 1, …, |s|  =  segment index 
Z = normalization factor 

Where: 

f8(j,   x,  (2,5,yj-1),(6,12,yj)) =  
      [yj-1= House_no]·[yj=Area]·[x6x7…x12 appears in a list of areas] 

A feature fi(j,x,s) depends only on sj-1, sj and the corresponding x 

[Gupta and Sarawagi, VLDB’2006] 



ProbDB for IE Models 
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Traditional IE keeps the maximum likelihood segmentation,  
which can be computed using dynamic programming (Viterbi):  

argmaxs  Pr(s | x, Λ) 

But this results in low recall, e.g. for the query: 

SELECT DISTINCT x.name 
FROM  Person x,   Addressp y 
WHERE x.ID = y.ID and y.city = ‘West Mumbai’ 

[Gupta and Sarawagi, VLDB’2006] 



ProbDB for IE Models 
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[Gupta and Sarawagi, VLDB’2006] 



ProbDB for IE Models 
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Next idea: try to keep the top 2 segmentations (or top k…) 
But k needs to be large to cover significant probability mass: 

[Gupta and Sarawagi, VLDB’2006] 
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ProbDB for IE Models 

ID House-No Street City P 

1 52 Goregaon West Mumbai 0.1 

1 52-A Goregaon West Mumbai 0.4 

1 52 Goregaon West Mumbai 0.2 

1 52-A Goregaon West Mumbai 0.2 

2 . . . . . . . . . . . . . . . . 

2  . . . . 

Keep all !   a probabilistic database: 

[Gupta and Sarawagi, VLDB’2006] 

SELECT DISTINCT x.name 
FROM  Person x,   Addressp y 
WHERE x.ID = y.ID and y.city = ‘West Mumbai’ 



ProbDB for IE Models 

The rest of their paper: 
•  Considers a compact representation of the 

probabilistic database 
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[Gupta and Sarawagi, VLDB’2006] 

We will discuss representations next time 



Answer these for IE 
(in class) 

•  Is there a ground truth (max likelihood world) ? 

•  What do we gain by keeping multiple worlds ? 

•  Are the confidence scores indeed probabilities ? 

49 



Similarity Joins 

•  Same object represented in different ways 

•  Why ? 
– Typos: “Woshington” v.s. “Washington” 
– Different naming conventions: “IBM” v.s. 

“International Business Machines Corporation” 

50 

[Arasu, Ganti, Kaushik, VLDB’2006] 



Example 
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CName1 . . . Other 
attributes 

Microsoft 
Corp 
Apple 
Computer 
Apples, 
Pears, and 
More 
. . . 

CName2 . . . Other 
attributes 

Microsoft 
Inc 
Apple 
Corporation 
Apples and 
Pears Farm 
. . . 

Company1 Company1 

[Arasu, Ganti, Kaushik, VLDB’2006] 



Similarity Join 
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SELECT * 
FROM Company1, Company2 
WHERE cname1 ≈ cname2 

We want the strings to be “similar” 

[Arasu, Ganti, Kaushik, VLDB’2006] 



What is “Similar” ? 

•  Similarity function sim(s1,s2): 
– Sim(s1,s2) > c  means s1, s2 are similar 

•  Distance function dist(s1,s2): 
– Dist(s1,s2) < c  means s1, s2 are similar 

53 

SELECT * 
FROM Company1, Company2 
WHERE cname1 ≈ cname2 

SELECT * 
FROM Company1, Company2 
WHERE Sim(cname1, cname2) > c 

[Arasu, Ganti, Kaushik, VLDB’2006] 



Q-Grams 

•  Given a string s, a q-gram is a substring of 
length q 

•  Usually q = 3 

54 

s1 = {was, ash, shi, hin, ing, ngt, gto, ton} 
s2 = {wos, osh, shi, hin, ing, ngt, gto, ton} 

washington     woshington 

Variation: may include beginning and end: ##w, #wa, on$, n$$ 

[Arasu, Ganti, Kaushik, VLDB’2006] 



Hamming Distance 

•  H(s1, s2) = |s1 Δ s2| =  |s1-s2| + |s2-s1| 
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s1 s2 

“s1 is similar to s2”    iff   H(s1, s2)  < k 

[Arasu, Ganti, Kaushik, VLDB’2006] 



Jaccard Similarity 

•  J(s1,s2) = |s1 ∩ s2| / |s1 ∪ s2| 
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s1 s2 

“s1 is similar to s2”    iff   J(s1, s2)  >  c 

[Arasu, Ganti, Kaushik, VLDB’2006] 



They are related ! 

•  Suppose |s1| = |s2| = L 
•  Denote I(s1,s2) = |s1 ∩ s2| 

Then: 
•  J(s1,s2) > c iff I(s1, s2) > 2cL/(1+c) 

•  H(s1,s2) < k iff I(s1,s2) > 2L – k 
57 Why ? 

[Arasu, Ganti, Kaushik, VLDB’2006] 



Representing q-Grams 
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Id Name . . . 
1 Washington . . . 
2 . . . . . . 

Id Qgram 
1 was 
1 ash 
1 shi 
1 hin 
. . . . . . 
2 . . . 

Company (id, name, …) CQ(id, qgram) 

SELECT x.id, y.id 
FROM Company x, Company y 
WHERE J(x.name, y.name) > c 

SELECT x.id, y.id 
FROM Company x, Company y 
WHERE H(x.name, y.name) < k 

SELECT x.id, y.id 
FROM CQ x, CQ y 
WHERE x.Qgram=y.Qgram 
GROUP BY x.id, y.id 
HAVING count(*) < k 

[Arasu, Ganti, Kaushik, VLDB’2006] 



ProbDBs for SS-Joins 

•  Most of the work is focused on computing it 
efficiently – we won’t discuss here 

•  Main point: the semantics of the ss-join 
depends on the threshold c 

•  The threshold is hard to choose ! 

Better: keep several ss-joins and their 
similarities  probabilistic database 

59 

[Arasu, Ganti, Kaushik, VLDB’2006] 



Answer these for SS-join 
(in class) 

•  Is there a ground truth (max likelihood world) ? 

•  What do we gain by keeping multiple worlds ? 

•  Are the confidence scores indeed probabilities ? 
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Other Types of Uncertain Data 

•  Deduplication 
•  Data integration 
•  Sensor readings 
•  RFID data 
•  Scientific data management 
•  Social networks 

61 

For most, the probabilistic data has 
not been studied seriously 



Summary of Uncertain Data 

•  Data is almost like a traditional database, 
but certain values or tuples are uncertain 

•  We assume uncertainties are quantified as 
probabilities (but this may be difficult in 
some cases) 

•  The research questions are: 
– Representation (Lecture 2) 
– Query processing (Lectures 3,4,5) 

62 



2. Information Disclosure 

Have private data 
•  Want to make available for statistical analysis 
•  But want to hide the private details 
Two conflicting goals: 
•  Strong privacy 
•  Good utiliy 

63 

[Rastogi, S., Hong, VLDB’2007] 



Example 
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Name Age Nationality Score 
Fred 17 British 62 
Alice 18 Czech 95 
Mary 22 Indian 99 
Joe 21 British 42 
Bob 22 Czech 92 

Instance I 

[Rastogi, S., Hong, VLDB’2007] 

Statistical queries OK: 
•  average score of British students ? 
•  how many Czechs scored 
   better than Indians ? 

Private queries not OK 
•  what is Alice’s score ?  



K-Anonymization 
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Name Age Nationality Score 
Fred 17 British 62 
Alice 18 Czech 95 
Mary 22 Indian 99 
Joe 21 British 42 
Bob 22 Czech 92 

Age Nationality Score 
15-19 * 62 
15-19 * 95 
20-24 * 99 
20-24 * 42 
20-24 * 92 

Instance I View V 

[Rastogi, S., Hong, VLDB’2007] 



Mallory the Eavesdropper… 

•  Wants to find out Alice’s score… 

66 



Mallory’s Cabal 

67 

Age Score 
15-19 62 
15-19 95 
20-24 99 
20-24 42 
20-24 92 

View V 
Case 1: Mallory Jr. knows 
that Alice is 18 years old. 
What is Alice’s score ? 

Case 2: Mallory Sr. knows 
that Alice is 18 years old, 
and is smarter than her brother, 
Bob, who is 22. 
What is Alice’s score ? 



68 [Rastogi, S., Hong, VLDB’2007] 

There are better 
anonymizations… 



Definition of Privacy 
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P(s | V) = the adversary’s a posterior belief of the secret s 

The adversary has a prior.  This is a probabilistic database P: 

P(s) = the adversary’s prior belief of the secret s 

After seeing V, the adversary adjusts its belief to the a posterior 

P(I | V) = 0                                 if V(I) ≠ V 
P(I | V) = P(I) / ∑J:V(J)=V P(J)      if V(I) = V 

Definition The algorithm computing IV  
is private for s if  P(s) ≈ P(s | V) 

[Rastogi, S., Hong, VLDB’2007] 



What are Prior and a Posteriori ? 
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Age Score 
15-19 62 
15-19 95 
20-24 99 
20-24 42 
20-24 92 

View V 
Case 1: Mallory Jr. knows 
that Alice is 18 years old. 
What is Alice’s score ? 

Case 2: Mallory Sr. knows 
that Alice is 18 years old, 
and is smarter than her brother, 
Bob, who is 22. 
What is Alice’s score ? 



Discussion of Information 
Disclosure 

•  The technical problem is computing P(s | V) 
•  But the probabilistic database P is very 

different from those in uncertain data ! 
– We don’t have the set of possible tuples t 
– We don’t have their marginal probabilities P(t) 
–  In fact, we may not even know Malory’s prior ! 
– Reasonable assumption: P(t) is “small”, ∀t 

71 



Discussion of Information 
Disclosure 

•  Approach 1: quantify over ALL P’s 
–  “perfect security” 

•  Approach 2: fix one particular “small” P 
– Random graphs 

•  Approach 3: quantify over all “small” P’s 
– Conditional logic ?? Differential privacy ?? 
– This approach is an open research question 

•  Lectures 6 and 7 
72 



3. Approximate Query Answering 

•  Have data I, want to compute a query q(I) 
– Usually q is a count(*), or avg( ) 

•  But I is too big: will use some statistics S to 
estimate q 

•  Goal: rewrite q to q0 s.t. q(I) ≈ q0(S) 

73 



Two Examples 

•  Consistent cardinality estimation 

•  Robust query optimization  

74 



Example 

75 

[Markl et al. VLDB’2005] 

SELECT count(*) 
FROM R 
WHERE R.A=10 and R.B=20 and R.C=30 

Assume |R| = 1,000,000,000 
Can’t scan R.  Will use statistics instead 

Think of this query as being issued during query optimization: 
Optimizer wants to find out the size of a subplan 



Histograms to the Rescue ! 
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R.A = … 9 10 11 … 
count = … … 100,000,000 … … 

[Markl et al. VLDB’2005] 

R.B = … 19 20 21 … 
count = … … 200,000,000 … … 

R.C = … 29 30 31 … 
count = … … 250,000,000 … … 



Normalized Histograms 
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R.A = … 10 … 
s1 = … 0.1 … 

[Markl et al. VLDB’2005] 

R.B = … 20 … 
s2 = … 0.2 … 

R.C = … 30 … 
s3 = … 0.25 … 

Replace counts with frequencies, by dividing by |R|=1,000,000,000: 

SELECT count(*) 
FROM R 
WHERE R.A=10 and R.B=20 and R.C=30 

What’s your 
estimate ? 



2-Dimensional Histograms 
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R.A = … 10 … 
s1 = … 0.1 … 

[Markl et al. VLDB’2005] 

R.B = … 20 … 
s2 = … 0.2 … 

R.C = … 30 … 
s3 = … 0.25 … 

We have two more histograms for the same |R|=1,000,000,000: 

SELECT count(*) 
FROM R 
WHERE R.A=10 and R.B=20 and R.C=30 

What’s your 
estimate now ? R.AB … 10,20 … 

s12 = … 0.05 … 

R.AC … 20,30 … 
s13 = … 0.03 … 



The Estimation Problem 

•  We have several statistics 
– Here: five histograms 

•  Want to estimate a query q 

•  Problem: 
– There are different ways to use the histograms, 

and result in inconsistent answers 
– We want a consistent estimate 
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[Markl et al. VLDB’2005] 



Histograms as Probabilities 

•  Probability space on{(x,y,z) | (x,y,z) ∈{0,1}3} 

defined as follows: 

•  Randomly select a tuple t from R 
–  If t.A=10 then set x=1; otherwise x=0 
–  If t.B=20 then set y=1; otherwise y=0 
–  If t.C=30 then set z=1; otherwise z=0 
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[Markl et al. VLDB’2005] 

Is this a probabilistic database ?? 



Modeling Histograms as ProbDB 
•  There are eight possible worlds, need their probs 
•  The five histograms lead to 5+1 = 6 constraints: 

81 

[Markl et al. VLDB’2005] 

x y z P 
0 0 0 p000 

0 0 1 p001 
0 1 0 p010 
0 1 1 p011 
1 0 0 p100 
1 0 1 p101 
1 1 0 p110 
1 1 1 p111 

p000+p001+p010+p011+p100+p101+p110+p111= 1 
p100+p101+p110+p111=s1 
p010+p011+p110+p111=s2 
p001+p011+p101+p111=s3 
p110+p111=s12 
p101+p111=s13 

But underdetermined. 
How do we choose ? 



Maximum Entropy Principle 

•  Equivalent to the principle of indifference 
•  The entropy: H = - ∑ pi log(pi) 
•  There is a unique solution to the previous 

system that maximizes H, which is obtained 
by solving a non-linear system of equations 
–  IN CLASS 

•  It turns out: p111 = 0.015, 
hence q(I) ≈ 15,000,000 

[Markl et al. VLDB’2005] 



A Much Simpler Approach: 
Sampling 

•  R has N=1,000,000,000 tuples 
•  Compute (offline) a sample of size n =500 

SELECT count(*) 
FROM R 
WHERE R.A=10 and R.B=20 and R.C=30 

•  Evaluate the query on the sample   8 tuples 
What is your estimate ? 



Robust Query Optimization 

Traditional optimization: 
•  Plan 1: use index 
•  Plan 2: sequential scan 

•  The choice between 1 and 2 
depends on the estimated selectivity 

•  E.g. for p < 0.26 the Plan 1 is better 
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[Babock et al. SIGMOD’2005] 



Robust Query Optimization 

The performance/predictability tradeoff: 
•  Plan 1: use index 

–  If it is right   
–  If it is wrong    MUST AVOID THIS !! 

•  Plan 2: sequential scan   
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[Babock et al. SIGMOD’2005] 

Optimizing performance may result in  
significant penalty, with some probabililty 



Query Plan Cost 
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[Babock et al. SIGMOD’2005] 



Cumulative Distribution 
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[Babock et al. SIGMOD’2005] 

T%=50%  plans are chosen by expected cost;  
T%=80%  plans chosen by their cost at cumulative prob of 80% 

User chooses confidence level T%.  



The Probabilistic Database 

88 

[Babock et al. SIGMOD’2005] 

•  R has N=1,000,000,000 tuples 
•  Compute (offline) a sample X of size n =500 

SELECT count(*) 
FROM R 
WHERE R.A=10 and R.B=20 and R.C=30 

•  Evaluate the query on the sample   8 tuples 
•  Thus E[p] = 8/500 = 0.0016  

But what is the distribution of p ??  



The Probabilistic Database 
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•  R has N=1,000,000,000 tuples 
•  Compute (offline) a sample X of size n =500 
•  A fraction k = 8 of X satisfy the predicate 
•  An unknown fraction p of R satisfy the pred. 
•  Denote f(z) = density function for p: 

[Babock et al. SIGMOD’2005] 



The Probabilistic Database 
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•  Bayes’ rule: 

[Babock et al. SIGMOD’2005] 

Next, compute each term (in class) 
•  What is Pr[X | p=z] ?  Assume X= w/ replacement 
•  Whas is “the prior” f(z) ? 



The Probabilistic Database 
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[Babock et al. SIGMOD’2005] 



The Probabilistic Database 
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[Babock et al. SIGMOD’2005] 



Summary on Approx. Query 
Answering 

•  Will become increasingly relevant in the 
near future 

•  A large collection of techniques exists: 
– Sketches, samples, statistics, … 

•  My thesis: there exists a foundation on 
probabilistic databases that still has to be 
discovered 

•  Lectures 8, 9: will try to find out together… 
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